|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910480167903321 |
|
|
Titolo |
Orbifolds in mathematics and physics : proceedings of a conference on mathematical aspects of orbifold string theory, May 4-8, 2001, University of Wisconsin, Madison, Wisconsin / / Alejandro Adem, Jack Morava, Yongbin Ruan, editors |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , [2002] |
|
©2002 |
|
|
|
|
|
|
|
|
|
ISBN |
|
0-8218-7900-6 |
0-8218-5646-4 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (370 p.) |
|
|
|
|
|
|
Collana |
|
Contemporary mathematics, , 0271-4132 ; ; 310 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Orbifolds |
Mathematical physics |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
""Contents""; ""Preface""; ""Algebraic orbifold quantum products""; ""Orbifold Gromov-Witten theory""; ""On orbifold elliptic genus""; ""Open-string Gromov-Witten invariants: Calculations and a mirror ""theorem""""; ""Orbifold quantum cohomology of the classifying space of a finite group""; ""Orbifold Frobenius algebras, cobordisms, and monodromies""; ""Loop groupoids, gerbes, and twisted sectors on orbifolds""; ""Framed knots at large N""; ""Orbifolds as groupoids: An introduction""; ""Orbifold cohomology group of toric varieties""; ""Hilbert schemes and symmetric products: A dictionary"" |
""1. Introduction""""2. The cohomology ring of Hilbert schemes""; ""3. The orbifold cohomology ring of symmetric products I""; ""4. The orbifold cohomology ring of symmetric products II""; ""5. The deformed orbifold cohomology ring of symmetric products""; ""6. Open questions""; ""References""; ""Stringy orbifolds""; ""Discrete torsion, quotient stacks, and string orbifolds""; ""Orbifold constructions of K3: A link between conformal field theory and geometry"" |
|
|
|
|
|
|
|
| |