1.

Record Nr.

UNINA9910465950503321

Autore

Hogan Michael <1966->

Titolo

The culture of our thinking in relation to spirituality [[electronic resource] /] / Michael Hogan

Pubbl/distr/stampa

New York, : Nova Science Publishers, c2009

ISBN

1-61209-403-1

Descrizione fisica

1 online resource (145 p.)

Collana

Religion and spirituality series

Disciplina

204.01/9

Soggetti

Spirituality - Psychology

Psychology, Religious

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references and index.



2.

Record Nr.

UNINA9910510575803321

Autore

Haran Dan

Titolo

The Absolute Galois Group of a Semi-Local Field / / by Dan Haran, Moshe Jarden

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021

ISBN

3-030-89191-7

Edizione

[1st ed. 2021.]

Descrizione fisica

1 online resource (147 pages)

Collana

Springer Monographs in Mathematics, , 2196-9922

Disciplina

512.32

Soggetti

Algebra

Geometry, Algebraic

Algebraic fields

Polynomials

Algebraic Geometry

Field Theory and Polynomials

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

- Introduction -- 1. Topologies -- 2. Families of Subgroups -- 3. Free Products of Finitely Many Profinite Groups -- 4. Generalized Free Products.-5. Relative Embedding Problems -- 6. Strong Proper Projectivity -- 7. Étale Profinite Subset of Subgr(G) -- 8. Fundamental Result -- 9. Main Result. Bibliography -- Index.

Sommario/riassunto

This book is devoted to the structure of the absolute Galois groups of certain algebraic extensions of the field of rational numbers. Its main result, a theorem proved by the authors and Florian Pop in 2012, describes the absolute Galois group of distinguished semi-local algebraic (and other) extensions of the rational numbers as free products of the free profinite group on countably many generators and local Galois groups. This is an instance of a positive answer to the generalized inverse problem of Galois theory. Adopting both an arithmetic and probabilistic approach, the book carefully sets out the preliminary material needed to prove the main theorem and its supporting results. In addition, it includes a description of Melnikov's construction of free products of profinite groups and, for the first time



in book form, an account of a generalization of the theory of free products of profinite groups and their subgroups. The book will be of interest to researchers in fieldarithmetic, Galois theory and profinite groups.