|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910465814603321 |
|
|
Autore |
Suhl Harry |
|
|
Titolo |
Relaxation processes in micromagnetics [[electronic resource] /] / Harry Suhl |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Oxford ; ; New York, : Oxford University Press, 2007 |
|
|
|
|
|
|
|
ISBN |
|
1-4356-2079-8 |
0-19-152367-4 |
1-281-16014-8 |
9786611160142 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (209 p.) |
|
|
|
|
|
|
Collana |
|
International series of monographs on physics ; ; 133 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Magnetization |
Equations of motion |
Magnetic recorders and recording |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. 185-188) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Contents; Preface; Notations and conventions; 1 The Classical Magnetization Field; 1.1 Introduction; 1.2 Equations of motion; 1.2.1 Damping; 1.3 Approaching the Curie temperature; 2 Small motions of the Magnetization; 2.1 Introduction; 2.2 Models of small motions; 2.2.1 Distributive damping; 2.2.2 Instabilities and spin wave condensates; 3 Intrinsic Damping; 3.1 Introduction; 3.2 Magnetostrictive coupling; 3.2.1 Small samples; 3.2.2 Large, homogeneous samples; 3.3 Loss torque in magnetic metals; 3.3.1 Eddy current damping |
3.3.2 Direct coupling of conduction electrons to the magnetization field3.4 Fluctuations in medium properties; 3.5 Relaxation due to weakly coupled magnetic impurities; 3.5.1 Slow relaxation; 3.5.2 Corrections to the adiabatic limit; 3.6 Appendix 3A. Inclusion of displacement current in Section 3.3.1; 4 Fluctuations; 4.1 Introduction; 4.2 Fluctuation-dissipation theorem; 4.3 Langevin equation, and generalized Langevin equation; 4.4 Fokker-Planck equation-cartesians; 4.4.1 Fokker-Planck equation in polar angles; 4.4.2 Fokker-Planck equation in the absence of well-defined canonical variables |
|
|
|
|