1.

Record Nr.

UNINA9910465714503321

Titolo

The dyer's handbook : memoirs on dyeing by a French gentleman-clothier in the age of enlightenment translated and contextualised / / edited by Dominique Cardon

Pubbl/distr/stampa

Oxford, [England] ; ; Philadelphia, [Pennsylvania] : , : Oxbow Books, , 2016

©2016

ISBN

1-78570-212-2

Descrizione fisica

1 online resource (361 pages) : illustrations, tables

Collana

Ancient Textiles Series ; ; Volume 26

Disciplina

667/.2

Soggetti

Dyes and dyeing - Textile fibers - France - Languedoc - History - 18th century

Dyes and dyeing - Wool - France - Languedoc - History - 18th century

Dyes and dyeing

Manuscripts, French - France - Languedoc

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references.



2.

Record Nr.

UNINA9910645947203321

Titolo

Machine learning under resource constraints . Volume 1 Fundamentals / / edited by Katharina Morik and Peter Marwedel

Pubbl/distr/stampa

Berlin ; ; Boston : , : De Gruyter, , 2022

Descrizione fisica

1 online resource (xi, 489 pages) : illustrations

Collana

De Gruyter STEM

Disciplina

006.31

Soggetti

Machine learning

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Sommario/riassunto

Machine Learning under Resource Constraints addresses novel machine learning algorithms that are challenged by high-throughput data, by high dimensions, or by complex structures of the data in three volumes. Resource constraints are given by the relation between the demands for processing the data and the capacity of the computing machinery. The resources are runtime, memory, communication, and energy. Hence, modern computer architectures play a significant role. Novel machine learning algorithms are optimized with regard to minimal resource consumption. Moreover, learned predictions are executed on diverse architectures to save resources. It provides a comprehensive overview of the novel approaches to machine learning research that consider resource constraints, as well as the application of the described methods in various domains of science and engineering. Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to the different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Several machine learning methods are inspected with respect to their resource requirements and how to enhance their scalability on diverse computing architectures ranging from embedded systems to large computing clusters.