|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910464929203321 |
|
|
Autore |
Pitts A. M (Andrew M.) |
|
|
Titolo |
Nominal sets : names and symmetry in computer science / / Andrew M. Pitts [[electronic resource]] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cambridge : , : Cambridge University Press, , 2013 |
|
|
|
|
|
|
|
ISBN |
|
1-139-89077-8 |
1-107-24758-6 |
1-107-25007-2 |
1-107-01778-5 |
1-139-08467-4 |
1-107-24924-4 |
1-107-24841-8 |
1-107-25090-0 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (xiii, 276 pages) : digital, PDF file(s) |
|
|
|
|
|
|
Collana |
|
Cambridge tracts in theoretical computer science ; ; 57 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Programming languages (Electronic computers) - Semantics |
Programming languages (Electronic computers) - Syntax |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Title from publisher's bibliographic system (viewed on 05 Oct 2015). |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and indexes. |
|
|
|
|
|
|
Nota di contenuto |
|
Introduction -- Part One : Theory. Permutations -- Support -- Freshness -- Name abstraction -- Orbit-finiteness -- Equivalents of Nom -- -- Part Two : Applications. Inductive and coinductive definitions -- Nominal algebraic data types -- Locally scoped names -- Functional programming -- Domain theory -- Computational logic. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Nominal sets provide a promising new mathematical analysis of names in formal languages based upon symmetry, with many applications to the syntax and semantics of programming language constructs that involve binding, or localising names. Part I provides an introduction to the basic theory of nominal sets. In Part II, the author surveys some of the applications that have developed in programming language semantics (both operational and denotational), functional programming and logic programming. As the first book to give a detailed account of the theory of nominal sets, it will be welcomed by researchers and graduate students in theoretical computer science. |
|
|
|
|