|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910464875403321 |
|
|
Autore |
Sogge Christopher D |
|
|
Titolo |
Hangzhou Lectures on Eigenfunctions of the Laplacian (AM-188) [[electronic resource]] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Princeton, : Princeton University Press, 2014 |
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (206 p.) |
|
|
|
|
|
|
Collana |
|
Annals of Mathematics Studies |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Eigenfunctions |
Laplacian operator |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover; Title; Copyright; Dedication; Contents; Preface; 1 A review: The Laplacian and the d'Alembertian; 1.1 The Laplacian; 1.2 Fundamental solutions of the d'Alembertian; 2 Geodesics and the Hadamard parametrix; 2.1 Laplace-Beltrami operators; 2.2 Some elliptic regularity estimates; 2.3 Geodesics and normal coordinates-a brief review; 2.4 The Hadamard parametrix; 3 The sharp Weyl formula; 3.1 Eigenfunction expansions; 3.2 Sup-norm estimates for eigenfunctions and spectral clusters; 3.3 Spectral asymptotics: The sharp Weyl formula; 3.4 Sharpness: Spherical harmonics |
3.5 Improved results: The torus3.6 Further improvements: Manifolds with nonpositive curvature; 4 Stationary phase and microlocal analysis; 4.1 The method of stationary phase; 4.2 Pseudodifferential operators; 4.3 Propagation of singularities and Egorov's theorem; 4.4 The Friedrichs quantization; 5 Improved spectral asymptotics and periodic geodesics; 5.1 Periodic geodesics and trace regularity; 5.2 Trace estimates; 5.3 The Duistermaat-Guillemin theorem; 5.4 Geodesic loops and improved sup-norm estimates; 6 Classical and quantum ergodicity; 6.1 Classical ergodicity; 6.2 Quantum ergodicity |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Based on lectures given at Zhejiang University in Hangzhou, China, and |
|
|
|
|