|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910464122103321 |
|
|
Autore |
Toomey Dan |
|
|
Titolo |
R for data science : learn and explore the fundamentals of data science with R / / Dan Toomey |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Birmingham, England : , : Packt Publishing, , 2014 |
|
©2014 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (364 p.) |
|
|
|
|
|
|
Collana |
|
Community Experience Distilled |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
R (Computer program language) |
Mathematical statistics - Data processing |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
|
|
|
|
|
Nota di contenuto |
|
Cover; Copyright; Credits; About the Author; About the Reviewers; www.PacktPub.com; Table of Contents; Preface; Chapter 1: Data Mining Patterns; Cluster analysis; K-means clustering; Usage; Example; K-medoids clustering; Usage; Example; Hierarchical clustering; Usage; Example; Expectation-maximization; Usage; List of model names; Example; Density estimation; Usage; Example; Anomaly detection; Show outliers; Example; Example; Another anomaly detection example; Calculating anomalies; Usage; Example 1; Example 2; Association rules; Mine for associations; Usage; Example; Questions; Summary |
Chapter 2: Data Mining SequencesPatterns; Eclat; Usage; Using eclat to find similarities in adult behavior; Finding frequent items in a dataset; An example focusing on highest frequency; arulesNBMiner; Usage; Mining the Agrawal data for frequent sets; Apriori; Usage; Evaluating associations in a shopping basket; Determining sequences using TraMineR; Usage; Determining sequences in training and careers; Similarities in the sequence; Sequence metrics; Usage; Example; Questions; Summary; Chapter 3: Text Mining; Packages; Text processing; Example; Creating a corpus; Text clusters; Word graphics |
Analyzing the XML textQuestions; Summary; Chapter 4: Data Analysis - Regression Analysis; Packages; Simple regression; Multiple regression; Multivariate regression analysis; Robust regression; Questions; |
|
|
|
|