1.

Record Nr.

UNINA9910464070203321

Autore

Chen Huigang

Titolo

Limited information Bayesian model averaging for dynamic panels with short time periods [[electronic resource] /] / prepared by Huigang Chen, Alin Mirestean, and Charalambos G. Tsangarides

Pubbl/distr/stampa

[Washington D.C.], : International Monetary Fund, 2009

ISBN

1-4623-7192-2

1-4527-1274-3

9786612842955

1-4518-7221-6

1-282-84295-1

Descrizione fisica

1 online resource (45 p.)

Collana

IMF working paper ; ; WP/09/74

Altri autori (Persone)

MiresteanAlin

TsangaridesCharalambos G

Soggetti

Panel analysis

Bayesian statistical decision theory

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Contents; I. Introduction; II. Model Uncertainty in the Bayesian Context; A. Model Selection and Hypothesis Testing; B. Bayesian Model Averaging; C. Choice of Priors; III. Limited Information Bayesian Model Averaging; A. A Dynamic Panel Data Model with Endogenous Regressors; B. Estimation and Moment Conditions; C. The Limited Information Criterion; IV. Monte Carlo Simualtions and Results; A. The Data Generating Process; B. Simulation Results; V. Conclusion; References; Tables; 1. Posterior Probability of the True Model; 2. Posterior Probability Ratio of True Model/Best among the Other Models

3. Probability of Retrieving the True Model4. Model Recovery: Medians and Variances of Posterior Inclusi; 5. Model Recovery: Medians and Variances of Estimated Paramet; 6. Posterior Probability of the True Model (Non-Gaussian Case); 7. Posterior Probability Ratio: True Model/best among the Other Models (Non-Gaussian Case); 8. Probability of Retrieving the True Model (Non-Gaussian Case); 9. Model



Recovery: Medians and Variances of Posterior Inclusion Probability for Each Variable (Non-Gaussian Case); 10. Model Recovery: Medians and Variances of Estimated Parameter Values (Non- Gaussian Case)

Appendix A Figures1. Posterior Densities for the Probabilities in Table 1; 2. Posterior Densities for the Probabilities in Table 2; 3. Box Plots for Parameters in Table 5; 4. Posterior Densities for the Probabilities in Table 6; 5. Posterior Densities for the Probabilities in Table 7; 6. Box Plots for Parameters in Table 10

Sommario/riassunto

Bayesian Model Averaging (BMA) provides a coherent mechanism to address the problem of model uncertainty. In this paper we extend the BMA framework to panel data models where the lagged dependent variable as well as endogenous variables appear as regressors. We propose a Limited Information Bayesian Model Averaging (LIBMA) methodology and then test it using simulated data. Simulation results suggest that asymptotically our methodology performs well both in Bayesian model selection and averaging. In particular, LIBMA recovers the data generating process very well, with high posterior inclusion

2.

Record Nr.

UNINA9910553075403321

Autore

Milvich Johannes

Titolo

Waveguide-Based Photonic Sensors: From Devices to Robust Systems

Pubbl/distr/stampa

Karlsruhe, : KIT Scientific Publishing, 2022

ISBN

1000140049

Descrizione fisica

1 online resource (276 p.)

Collana

Karlsruhe Series in Photonics & Communications

Soggetti

Electrical engineering

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Sommario/riassunto

Integrated photonic sensor systems are miniaturized, mass-producible devices that leverage the mature semiconductor fabrication technology and a well-established ecosystem for photonic circuits. This book aims at a holistic treatment of waveguide-based photonic sensor systems by



analyzing photonic waveguide design, photonic circuit design and readout design. Across all levels, a special emphasis is given to system-level performance optimization under realistic environmental conditions.