|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910464000003321 |
|
|
Titolo |
Fast ion-atom and ion-molecule collisions [[electronic resource] /] / editor Dzevad Belkic, Karolinska Institute, Stockholm, Sweden |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Singapore ; ; Hackensack, NJ, : World Scientific, 2013 |
|
|
|
|
|
|
|
ISBN |
|
1-283-97153-4 |
981-4407-13-5 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (335 p.) |
|
|
|
|
|
|
Collana |
|
Interdisciplinary research on particle collisions and quantitative spectroscopy ; ; vol. 1 |
|
|
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Atom-molecule collisions |
Ion-molecule collisions |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Preface to Volume 1; Editorial; Acknowledgments; Contents; 1. Electron Capture Processes in Ion-Atom Collisions at Intermediate Projectile Energies M. Schulz, A. L. Harris, T. Kirchner and D. H. Madison; 1. Introduction; 2. Experimental Methods; 3. Theory; 3.1. 4-Body Distorted Wave (4DW) Theory; 3.2. The Basis Generator Method within the Impact-Parameter Picture; 4. Discussion; 4.1. Transfer and Target Excitation; 4.2. Double Capture; 5. Conclusions; Acknowledgements; References |
2. COLTRIMS Experiments on State-Selective Electron Capture in Alpha-He Collisions at Intermediate Energies M. Alessi, S. Otranto and P. Focke1. Introduction; 2. The COLTRIMS Concept; 3. Experiment; 4. Electron Capture in 3He2++He; 5. Summary; References; 3. Recent Advances in the Theory and Modelling of Multiple Processes in Heavy-Particle Collisions T. Kirchner, M. Zapukhlyak, M. F. Ciappina and M. Schulz; 1. Introduction; 2. Theory; 2.1. Independent Electron Approximation for Capture Processes; 2.2. Perturbative Models of Double-Ionization Processes; 3. Results |
|
|
|
|
|
|
|
|
|
|
|
3.1. Processes Involving Electron Capture3.2. Double Ionization; 4. Conclusions; Acknowledgements; References; 4. A 4-Body Model for Charge Transfer Collisions A. L. Harris, J. L. Peacher and D. H. Madison; 1. Introduction; 2. General Theoretical Approach; 2.1. Transition Matrix and Differential Cross Section; 2.2. Two Potential Formulation; 3. Four-Body Transfer with Target Excitation (4BTTE) Model; 3.1. Single Charge Transfer without Target Excitation; 3.2. Charge Transfer with Target Excitation; 4. Four-Body Double Capture (4BDC) Model; 5. Conclusion; Acknowledgements; References |
5. Distorted Wave Methodologies for Energetic Ion-Atom Collisions S. D. Kunikeev1. Introduction; 2. Two-Body Coulomb Scattering; 2.1. Quantum-Mechanical Plane and Spherical Waves; 2.2. The WKB and Eikonal Representations; 2.3. Coulomb Scattering Amplitude; 3. Three-Body Coulomb Scattering; 3.1. Coulomb Boundary Conditions for Three Particles into Continuum; 3.2. Coulomb Boundary Conditions for Two Bound Particles and the Third Particle Into Continuum; 4. Coulomb Scattering Effects in Ionization Electron Spectra; 4.1. Plane and Spherical Wave Contributions; 4.2. Cusp Peak |
5. Coulomb Scattering Effects in Autoionization Electron Spectra5.1. Coulomb Focusing Effect; 5.2. Interference Effects between Plane and Spherical Distorted Waves; 5.3. Unitarized Post-Collision Interaction Models; 6. Effects of the Continuum Distortion in Charge Transfer; 6.1. Thomas Peak; 6.2. Plane and Spherical Wave Contributions; 7. Discussion and Conclusions; Acknowledgements; References; 6. Critical Assessment of Theoretical Methods for Li3+ Collisions with He at Intermediate and High Impact Energies Dz. Belkic, I. Mancev, and N. Milojevic; 1. Introduction; 2. Double Electron Capture |
3. Single Electron Capture |
|
|
|
|
|
|
Sommario/riassunto |
|
The principal goal of this book is to provide state-of-the-art coverage of the non-relativistic three- and four-body theories at intermediate and high energy ion-atom and ion-molecule collisions. The focus is on the most frequently studied processes: electron capture, ionization, transfer excitation and transfer ionization. The content is suitable both for graduate students and experienced researchers. For these collisions, the literature has seen enormous renewal of activity in the development and applications of quantum-mechanical theories. This subject is of relevance in several branches of |
|
|
|
|
|
|
|
| |