|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910463845403321 |
|
|
Autore |
Mikhailets Vladimir A. |
|
|
Titolo |
Hörmander spaces, interpolation, and elliptic problems / / Vladimir A. Mikhailets, Aleksandr A. Murach |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin : , : De Gruyter, , [2014] |
|
©2014 |
|
|
|
|
|
|
|
|
|
ISBN |
|
3-11-029690-X |
3-11-036906-0 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (310 p.) |
|
|
|
|
|
|
Collana |
|
De Gruyter studies in mathematics, , 0179-0986 ; ; 60 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Elliptic operators |
Partial differential operators |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (pages 275-290) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Front matter -- Preface -- Preface to the English edition -- Acknowledgements -- Contents -- Introduction -- Chapter 1. Interpolation and Hörmander spaces -- Chapter 2. Hörmander spaces on closed manifolds and their applications -- Chapter 3. Semihomogeneous elliptic boundary-value problems -- Chapter 4. Inhomogeneous elliptic boundary-value problems -- Chapter 5. Elliptic systems -- Bibliography -- Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
The monograph gives a detailed exposition of the theory of general elliptic operators (scalar and matrix) and elliptic boundary value problems in Hilbert scales of Hörmander function spaces. This theory was constructed by the authors in a number of papers published in 2005-2009. It is distinguished by a systematic use of the method of interpolation with a functional parameter of abstract Hilbert spaces and Sobolev inner product spaces. This method, the theory and their applications are expounded for the first time in the monographic literature. The monograph is written in detail and in a |
|
|
|
|
|
|
|