1.

Record Nr.

UNINA9910463457003321

Autore

Henle Michael

Titolo

Which numbers are real? [[electronic resource] /] / Michael Henle

Pubbl/distr/stampa

Washington, D.C., : Mathematical Association of America, c2012

ISBN

1-61444-107-3

Descrizione fisica

1 online resource (0 p.)

Collana

Classroom resource materials

Disciplina

512.786

Soggetti

Numbers, Real

Numbers, Complex

Number theory

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. 205-208) and index.

Nota di contenuto

pt. 1. The reals -- pt. 2. Multi-dimensional numbers -- pt. 3. Alternative lines.

Sommario/riassunto

Which Numbers are Real? surveys alternative real number systems: systems that generalize and extend the real numbers while staying close to the properties that make the reals central to mathematics. These systems include, for example, multi-dimensional numbers (the complex numbers, the quaternions, and others), systems that include infinitely small and infinitely large numbers (the hyperreal numbers and the surreal numbers), and numbers that represent positions in games (the surreal numbers). All the systems presented have applications and several are the subject of current mathematical research.  Which Numbers are Real? will be of interest to anyone who likes numbers, but particularly upper-level undergraduates, graduate students, and mathematics teachers at all levels.