1.

Record Nr.

UNINA9910461771603321

Autore

Feldman David P

Titolo

Chaos and Fractals [[electronic resource] ] : An Elementary Introduction

Pubbl/distr/stampa

Oxford, : OUP Oxford, 2012

ISBN

1-283-64388-X

0-19-163752-1

Descrizione fisica

1 online resource (431 p.)

Disciplina

515.39

Soggetti

Chaotic behavior in systems

Differentiable dynamical systems

Fractals

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di contenuto

Cover; Contents; I: Introducing Discrete Dynamical Systems; 0 Opening Remarks; 0.1 Chaos; 0.2 Fractals; 0.3 The Character of Chaos and Fractals; 1 Functions; 1.1 Functions as Actions; 1.2 Functions as a Formula; 1.3 Functions are Deterministic; 1.4 Functions as Graphs; 1.5 Functions as Maps; Exercises; 2 Iterating Functions; 2.1 The Idea of Iteration; 2.2 Some Vocabulary and Notation; 2.3 Iterated Function Notation; 2.4 Algebraic Expressions for Iterated Functions; 2.5 Why Iteration?; Exercises; 3 Qualitative Dynamics: The Fate of the Orbit; 3.1 Dynamical Systems

3.2 Dynamics of the Squaring Function3.3 The Phase Line; 3.4 Fixed Points via Algebra; 3.5 Fixed Points Graphically; 3.6 Types of Fixed Points; Exercises; 4 Time Series Plots; 4.1 Examples of Time Series Plots; Exercises; 5 Graphical Iteration; 5.1 An Initial Example; 5.2 The Method of Graphical Iteration; 5.3 Further Examples; Exercises; 6 Iterating Linear Functions; 6.1 A Series of Examples; 6.2 Slopes of +1 or -1; Exercises; 7 Population Models; 7.1 Exponential Growth; 7.2 Modifying the Exponential Growth Model; 7.3 The Logistic Equation; 7.4 A Note on the Importance of Stability

7.5 Other r ValuesExercises; 8 Newton, Laplace, and Determinism; 8.1 Newton and Universal Mechanics; 8.2 The Enlightenment and



Optimism; 8.3 Causality and Laplace's Demon; 8.4 Science Today; 8.5 A Look Ahead; II: Chaos; 9 Chaos and the Logistic Equation; 9.1 Periodic Behavior; 9.2 Aperiodic Behavior; 9.3 Chaos Defined; 9.4 Implications of Aperiodic Behavior; Exercises; 10 The Butterfly Effect; 10.1 Stable Periodic Behavior; 10.2 Sensitive Dependence on Initial Conditions; 10.3 SDIC Defined; 10.4 Lyapunov Exponents; 10.5 Stretching and Folding: Ingredients for Chaos

10.6 Chaotic Numerics: The Shadowing LemmaExercises; 11 The Bifurcation Diagram; 11.1 A Collection of Final-State Diagrams; 11.2 Periodic Windows; 11.3 Bifurcation Diagram Summary; Exercises; 12 Universality; 12.1 Bifurcation Diagrams for Other Functions; 12.2 Universality of Period Doubling; 12.3 Physical Consequences of Universality; 12.4 Renormalization and Universality; 12.5 How are Higher-Dimensional Phenomena Universal?; Exercises; 13 Statistical Stability of Chaos; 13.1 Histograms of Periodic Orbits; 13.2 Histograms of Chaotic Orbits; 13.3 Ergodicity; 13.4 Predictable Unpredictability

16.6 Fractals, Defined Again

Sommario/riassunto

This book provides the reader with an elementary introduction to chaos and fractals, suitable for students with a background in elementary algebra, without assuming prior coursework in calculus or physics. It introduces the key phenomena of chaos - aperiodicity, sensitive dependence on initial conditions, bifurcations - via simple iterated functions. Fractals are introduced as self-similar geometric objects and analyzed with the self-similarity and box-counting dimensions. After abrief discussion of power laws, subsequent chapters explore Julia Sets and the Mandelbrot Set. The last part of the



2.

Record Nr.

UNISALENTO991004067309707536

Autore

Shakespeare, William

Titolo

Sonnets / William Shakespeare ; notes by Geoffrey M. Ridden

Pubbl/distr/stampa

Harlow : Longman, 1991

ISBN

0582782856

Descrizione fisica

96 p. ; 21 cm

Collana

York notes

Altri autori (Persone)

Ridden, Geoffrey M

Disciplina

821.33

Soggetti

Shakespeare, William. Sonnets

Shakespeare, William. Sonnets

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia