|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910461322403321 |
|
|
Autore |
Gottlieb Sigal |
|
|
Titolo |
Strong stability preserving Runge-Kutta and multistep time discretizations [[electronic resource] /] / Sigal Gottlieb, David Ketcheson, Chi-Wang Shu |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hackensack, N.J., : World Scientific, c2011 |
|
|
|
|
|
|
|
ISBN |
|
1-283-14832-3 |
9786613148322 |
981-4289-27-2 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (189 p.) |
|
|
|
|
|
|
Altri autori (Persone) |
|
KetchesonDavid I |
ShuChi-Wang |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Runge-Kutta formulas |
Differential equations - Numerical solutions |
Stability |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Preface; Contents; 1. Overview: The Development of SSP Methods; 2. Strong Stability Preserving Explicit Runge-Kutta Methods; 3. The SSP Coe cient for Runge-Kutta Methods; 4. SSP Runge-Kutta Methods for Linear Constant Coefficient Problems; 5. Bounds and Barriers for SSP Runge-Kutta Methods; 6. Low Storage Optimal Explicit SSP Runge-Kutta Methods; 7. Optimal Implicit SSP Runge-Kutta Methods; 8. SSP Properties of Linear Multistep Methods; 9. SSP Properties of Multistep Multi-Stage Methods; 10. Downwinding; 11. Applications; Bibliography; Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book captures the state-of-the-art in the field of Strong Stability Preserving (SSP) time stepping methods, which have significant advantages for the time evolution of partial differential equations describing a wide range of physical phenomena. This comprehensive book describes the development of SSP methods, explains the types of problems which require the use of these methods and demonstrates the efficiency of these methods using a variety of numerical examples. |
|
|
|
|