|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910461204503321 |
|
|
Autore |
Deba Anīśa |
|
|
Titolo |
Triangular orthogonal functions for the analysis of continuous time systems / / Anish Deb, Gautam Sarkar, Anindita Sengupta [[electronic resource]] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
London : , : Anthem Press, , 2011 |
|
|
|
|
|
|
|
ISBN |
|
1-280-49103-5 |
9786613586261 |
1-84331-811-3 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (xii, 156 pages) : digital, PDF file(s) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Title from publisher's bibliographic system (viewed on 02 Oct 2015). |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
; Ch. 1 Walsh, Block Pulse, and Related Orthogonal Functions in Systems and Control -- ; 1.1. Orthogonal Functions and their Properties -- ; 1.2. Different Types of Nonsinusoidal Orthogonal Functions -- ; 1.3. Walsh Functions in Systems and Control -- ; 1.4. Block Pulse Functions in Systems and Control -- ; 1.5. Conclusion -- References -- ; ch. 2 A Newly Proposed Triangular Function Set and Its Properties -- ; 2.1. Walsh Functions and Related Operational Matrix for Integration -- ; 2.2. BPFs and Related Operational Matrices -- ; 2.3. Sample-and-Hold Functions [9] -- ; 2.4. From BPF to a Newly Defined Complementary Set of Triangular Functions -- ; 2.5. Piecewise Linear Approximation of a Square Integrable Function f(t) -- ; 2.6. Orthogonality of Triangular Basis Functions -- ; 2.7. A Few Properties of Orthogonal TF -- ; 2.8. Function Approximation via Optimal Triangular Function Coefficients -- ; 2.9. Conclusion -- References -- ; ch. 3 Function Approximation via Triangular Function Sets and Operational Matrices in Triangular Function Domain -- ; 3.1. Approximation of a Square Integrable Time Function f(t) by BPF and TF -- ; 3.2. Operational Matrices for Integration in Triangular Function Domain -- ; 3.3. Error Analysis -- ; 3.4. Comparison of Error for Optimal and Nonoptimal Representation via Block Pulse as well as Triangular Functions -- ; 3.5. Conclusion -- References -- ; ch. 4 |
|
|
|
|
|
|
|
|
|
|
|
Analysis of Dynamic Systems via State Space Approach -- ; 4.1. Analysis of Dynamic Systems via Triangular Functions -- ; 4.2. Numerical Experiment [2] -- ; 4.3. Conclusion -- References -- ; ch. 5 Convolution Process in Triangular Function Domain and Its Use in SISO Control System Analysis -- ; 5.1. Convolution Integral -- ; 5.2. Convolution in Triangular Function Domain [3] -- ; 5.3. Convolution of Two Time Functions in TF Domain -- ; 5.4. Numerical Experiment -- ; 5.5. Integral Squared Error (ISE) in TF Domain and Its Comparison with BPF Domain Solution -- ; 5.6. Conclusion -- References -- ; ch. 6 Identification of SISO Control Systems via State Space Approach -- ; 6.1. System Identification via State Space Approach -- ; 6.2. Numerical Example [6] -- ; 6.3. Conclusion -- References -- ; ch. 7 Solution of Integral Equations via Triangular Functions -- ; 7.1. Solution of Integral Equations via Triangular Functions -- ; 7.2. Conclusion -- References -- ; ch. 8 Microprocessor Based Simulation of Control Systems Using Orthogonal Functions -- ; 8.1. Review of Delta Function and Sample-and-Hold Function Operational Technique -- ; 8.2. Microprocessor Based Simulation of Linear Single-Input Single-Output (SISO) Sampled-Data Systems [7] -- ; 8.3. Conclusion -- References. |
|
|
|
|
|
|
Sommario/riassunto |
|
This book deals with a new set of triangular orthogonal functions, which evolved from the set of well known block pulse functions (BPF), a major member of the piecewise constant orthogonal function (PCOF) family. |
|
|
|
|
|
|
|
| |