| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA990000863520203316 |
|
|
Titolo |
Idee per innovare : senza frontiere (3) |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Collocazione |
|
338.945 POL 2/3 (IEP IV 240 3) |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNINA9910458525703321 |
|
|
Autore |
Mehta Manish, MD. |
|
|
Titolo |
The hospitalist manual [[electronic resource] /] / Manish Mehta, Arun Mathews |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Shelton, CT., : People's Medical Pub. House, 2010 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (330 p.) |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Soggetti |
|
Hospitalists |
Hospitals - Medical staff |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
""Front matter""; ""Table of Contents""; ""1: The Evolution of Hospitalist Medicine""; ""2: Preparing for Your First Day""; ""3: Coding and Billing""; ""4: Medical Rounds""; ""5: ICU Rounds""; ""6: Procedures""; ""7: Pre-Op Evaluations""; ""8: Pacing, Fatigue, and Empathy""; ""9: Ethical Issues in Hospital Medicine""; ""10: Risk Management for Hospitalists""; |
|
|
|
|
|
|
|
|
|
|
|
|
|
""Appendix A: Abbreviations""; ""Appendix B: Dictation Templates""; ""Bibliography""; ""Index"" |
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910141583103321 |
|
|
Autore |
Pompe Wolfgang |
|
|
Titolo |
Bio-nanomaterials [[electronic resource]] : designing materials inspired by nature / / Wolfgang Pompe ...[et al.] |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Weinheim, Germany, : Wiley-Vch, c2013 |
|
|
|
|
|
|
|
ISBN |
|
3-527-65528-X |
3-527-65526-3 |
3-527-65529-8 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (472 p.) |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes biographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Bio-Nanomaterials: Designing materials inspired by nature; Contents; Preface; 1 Molecular Units; 1.1 Case Studies; 1.1.1 Nucleic Acids; 1.1.2 Proteins; 1.1.3 Carbohydrates; 1.1.4 Lipids; 1.2 Basic Principles; 1.2.1 The Persistence Lengths of Biopolymer Chains; 1.2.2 Equilibrium Shape of a Semiflexible Polymer Chain; 1.2.3 The Load-Extension Diagram of a Semiflexible Polymer Chain; 1.2.4 Cooperativity; 1.2.5 Protein Folding; 1.2.6 DNA Melting Transition; 1.2.7 Biocatalytic Reactions; 1.3 Bioengineering; 1.3.1 Biointerfacing; 1.3.2 DNA-Based Nanotechnology |
1.3.2.1 Biomolecular Templates for Submicrometer Electronic Circuitries 1.3.2.2 DNA-Based Nanoprobes; 1.3.3 Protein-Based Nanotechnology; References; 2 Molecular Recognition; 2.1 Case Study; 2.2 Basic Principles; 2.2.1 Complementary Interaction between Proteins and Ligands; 2.2.2 Cooperative Protein-Ligand Interaction; 2.2.3 The Enzyme-Linked Immunosorbent Assay; 2.3 Engineering of Biomolecular Recognition Systems; 2.3.1 Engineering of Protein-Based Bioaffine Materials; 2.3.1.1 Interfacing Mechanisms of Proteins via Bioaffinity; 2.3.2 Engineering of Sensing Biofunctionalized Materials |
2.3.2.1 Design Principles of Biosensors 2.3.2.2 Integration of Sensing Biological Elements and Transducer Units; References; 3 Cell Adhesion; |
|
|
|
|
|
|
|
|
|
|
|
3.1 Case Study; 3.2 Basic Principles; 3.2.1 The Cellular Mechanotransduction System; 3.2.2 Mechanical Impact of the ECM on Cell Development; 3.2.3 Influence of the Microenvironment Topology on the Cell Spreading and Development; 3.3 Bioengineering; 3.3.1 The Basic Approach and Goals; 3.3.2 Tailored Surfaces for In Vitro Culturing of Cells; 3.3.2.1 A Modular Polymer Platform for Mechanically Regulated Cell Culturing at Interfaces |
3.3.2.2 Regulation of Cell Fate by Nanostructured Surfaces 3.3.3 Three-Dimensional Scaffolds for Tissue Engineering; 3.3.4 Switchable Substrates and Matrices; References; 4 Whole-Cell Sensor Structures; 4.1 Case Studies; 4.2 Basic Principles; 4.3 Bioengineering; References; 5 Biohybrid Silica-Based Materials; 5.1 Case Studies; 5.2 Basic Principles; 5.2.1 Preparation of Silica-Based Xerogels; 5.2.2 Biological Properties of Silica-Based Biocers; 5.3 Bioengineering; 5.3.1 Bioactive Sol-Gel Coatings and Composites; 5.3.2 Biocatalytic Sol-Gel Coatings; 5.3.3 Bioremediation |
5.3.4 Cell-Based Bioreactors 5.3.5 Silica-Based Controlled Release Structures; 5.3.6 Patterned Structures; 5.4 Silicified Geological Biomaterials; References; 6 Biomineralization; 6.1 Case Studies; 6.2 Basic Principles; 6.2.1 Precipitation; 6.2.1.1 Thermodynamics of Mineralization; 6.2.1.2 Kinetics of Mineralization; 6.2.2 Phenomenology of Biomineralization; 6.2.3 Basic Mechanisms in Biomineralization; 6.2.4 Biologically Mediated Mineralization: the Competition between Inhibition and Growth; 6.2.4.1 Effect of Polypeptides on Precipitate Habitus; 6.2.4.2 The Formation of Metastable Polymorphs |
6.2.5 Biologically Induced Mineralization: Role of the Epicellular Space and the Extracellular Polymeric Substances |
|
|
|
|
|
|
Sommario/riassunto |
|
Bio-nanotechnology covers the development of novel techniques and materials by making use of the inspiration derived from biomolecular structures and processes. The progress in molecular biology and microbiology over the past 50 years has provided a solid basis for such development.Well characterized natural biomolecules as well as tailored recombinant proteins and tailored microorganisms obtained by genetic engineering provide a large ""toolbox"" for the implementation of biological structures in a technical environment. Biologically inspired mater |
|
|
|
|
|
|
|
| |