|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910458257603321 |
|
|
Autore |
Mindlin Raymond D (Raymond David), <1906-1987.> |
|
|
Titolo |
An introduction to the mathematical theory of vibrations of elastic plates [[electronic resource] /] / R.D. Mindlin ; edited by Jiashi Yang |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hackensack, N.J., : World Scientific, c2006 |
|
|
|
|
|
|
|
ISBN |
|
1-281-37323-0 |
9786611373238 |
981-277-249-9 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (212 p.) |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Elastic plates and shells |
Vibration - Mathematical models |
Nonlinear theories |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. 175-180) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Contents; Foreword; Preface; Chapter 1: Elements of the Linear Theory of Elasticity; 1.01 Notation; 1.02 Principle of Conservation of Energy; 1.03 Hooke's Law; 1.04 Constants of Elasticity; 1.05 Uniqueness of Solutions; 1.06 Variational Equation of Motion |
1.07 Displacement-Equations of Motion Chapter 2: Solutions of the Three-Dimensional Equations; 2.01 Introductory; 2.02 Simple Thickness-Modes in an Infinite Plate; 2.03 Simple Thickness-Modes in an Infinite, Isotropic Plate; 2.04 Simple Thickness-Modes in an Infinite, Monoclinic Plate; 2.05 Simple Thickness-Modes in an Infinite, Triclinic Plate |
2.06 Plane Strain in an Isotropic Body 2.07 Equivoluminal Modes; 2.08 Wave-Nature of Equivoluminal Modes; 2.09 Infinite, Isotropic Plate Held between Smooth, Rigid Surfaces (Plane Strain); 2.10 Infinite, Isotropic Plate Held between Smooth, Elastic Surfaces (Plane Strain); 2.11 Coupled Dilatational and Equivoluminal Modes in an Infinite, Isotropic Plate with Free Faces (Plane Strain) |
2.12 Three-Dimensional Coupled Dilatational and Equivoluminal Modes in an Infinite Isotropic Plate with Free Faces 2.13 Solutions in |
|
|
|
|