|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910455859203321 |
|
|
Autore |
Cencini Massimo |
|
|
Titolo |
Chaos [[electronic resource] ] : from simple models to complex systems / / Massimo Cencini, Fabio Cecconi, Angelo Vulpiani |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hackensack, N.J., : World Scientific, c2010 |
|
|
|
|
|
|
|
ISBN |
|
1-282-75833-0 |
9786612758331 |
981-4277-66-5 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (482 p.) |
|
|
|
|
|
|
Collana |
|
Series on advances in statistical mechanics ; ; v. 17 |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Chaotic behavior in systems |
Dynamics |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Contents; Preface; Introduction; Historical note; Overview of the book; Hints on how to use/read this book; Introduction to Dynamical Systems and Chaos; 1. First Encounter with Chaos; 1.1 Prologue; 1.2 The nonlinear pendulum; 1.3 The damped nonlinear pendulum; 1.4 The vertically driven and damped nonlinear pendulum; 1.5 What about the predictability of pendulum evolution?; 1.6 Epilogue; 2. The Language of Dynamical Systems; 2.1 Ordinary Differential Equations (ODE); 2.1.1 Conservative and dissipative dynamical systems; BoxB. 1 Hamiltonian dynamics |
A: Symplectic structure and Canonical Transformations B: Integrable systems and Action-Angle variables; 2.1.2 PoincaréMap; 2.2 Discrete time dynamical systems: maps; 2.2.1 Two dimensional maps; 2.2.1.1 The Hénon Map; 2.2.1.2 Two-dimensional symplectic maps; 2.3 The role of dimension; 2.4 Stability theory; 2.4.1 Classification of fixed points and linear stability analysis; BoxB. 2 A remark on the linear stability of symplectic maps; 2.4.2 Nonlinear stability; 2.4.2.1 Limit cycles; 2.4.2.2 Lyapunov Theorem; 2.5 Exercises; 3. Examples of Chaotic Behaviors; 3.1 The logisticmap |
|
|
|
|