|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910453783503321 |
|
|
Autore |
Novotný A |
|
|
Titolo |
Introduction to the mathematical theory of compressible flow [[electronic resource] /] / A. Novotný, I. Straškraba |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Oxford ; ; New York, : Oxford University Press, 2004 |
|
|
|
|
|
|
|
ISBN |
|
1-280-84522-8 |
0-19-152395-X |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (527 p.) |
|
|
|
|
|
|
Collana |
|
Oxford lecture series in mathematics and its applications ; ; 27 |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Fluid dynamics - Mathematical models |
Compressibility |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Contents; 1 Fundamental concepts and equations; 2 Theoretical results for the Euler equations; 3 Some mathematical tools for compressible flows; 4 Weak solutions for steady Navier-Stokes equations of compressible barotropic flow; 5 Strong solutions for steady Navier-Stokes equations of compressible barotropic flow and small data; 6 Some mathematical tools for nonsteady equations; 7 Weak solutions for nonsteady Navier-Stokes equations of compressible barotropic flow; 8 Global behavior of weak solutions; 9 Strong solutions of nonsteady compressible Navier-Stokes equations; References; Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book provides a rapid introduction to the mathematical theory of compressible flow, giving a comprehensive account of the field and all important results up to the present day. The book is written in a clear, instructive and self-contained manner and will be accessible to a wide audience. - ;This book provides a comprehensive introduction to the mathematical theory of compressible flow, describing both inviscid and viscous compressible flow, which are governed by the Euler and the Navier-Stokes equations respectively. The method of presentation allows readers with different backgrounds to |
|
|
|
|
|
|
|