1.

Record Nr.

UNINA9910453553603321

Titolo

Methods of qualitative theory in nonlinear dynamics . Part II [[electronic resource] /] / Leonid P. Shilnikov ... [et al.]

Pubbl/distr/stampa

Singapore ; ; River Edge, NJ, : World Scientific, 2001

ISBN

1-281-94825-X

9786611948252

981-279-855-2

Descrizione fisica

1 online resource (591 p.)

Collana

World scientific series on nonlinear science. Series A, Monographs and treatises ; ; 5

Altri autori (Persone)

ShilʹnikovL. P

Disciplina

514.74

514/.74

620.10401515355

Soggetti

Nonlinear theories

Nonlinear mechanics

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and indexes.

Nota di contenuto

Contents               ; Introduction to Part II                              ; Chapter 7. STRUCTURALLY STABLE SYSTEMS                                             ; 7.1. Rough systems on a plane. Andronov-Pontryagin theorem                                                                 ; 7.2. The set of center motions                                     ; 7.3. General classification of center motions                                                    ; 7.4. Remarks on roughness of high-order dynamical systems

7.5. Morse-Smale systems                               7.6. Some properties of Morse-Smale systems                                                  ; Chapter 8. BIFURCATIONS OF DYNAMICAL SYSTEMS                                                   ; 8.1. Systems of first degree of non-roughness                                                    ; 8.2. Remarks on bifurcations of multi-dimensional systems

8.3. Structurally unstable homoclinic and heteroclinic orbits. Moduli of topological equivalence                                                                                                       8.4. Bifurcations in finite-parameter families of systems. Andronov's setup                                                                                  ; Chapter 9. THE BEHAVIOR OF DYNAMICAL SYSTEMS ON STABILITY BOUNDARIES OF



EQUILIBRIUM STATES

9.1. The reduction theorems. The Lyapunov functions                                                          9.2. The first critical case                                   ; 9.3. The second critical case                                    ; Chapter 10. THE BEHAVIOR OF DYNAMICAL SYSTEMS ON STABILITY BOUNDARIES OF PERIODIC TRAJECTORIES                                                                                                     ; 10.1. The reduction of the Poincare map. Lyapunov functions

10.2. The first critical case                                    10.3. The second critical case                                     ; 10.4. The third critical case. Weak resonances                                                     ; 10.5. Strong resonances                              ; 10.6. Passage through strong resonance on stability boundary                                                                   ; 10.7. Additional remarks on resonances

Chapter 11. LOCAL BIFURCATIONS ON THE ROUTE OVER STABILITY BOUNDARIES

Sommario/riassunto

Bifurcation and chaos has dominated research in nonlinear dynamics for over two decades, and numerous introductory and advanced books have been published on this subject. There remains, however, a dire need for a textbook which provides a pedagogically appealing yet rigorous mathematical bridge between these two disparate levels of exposition. This book has been written to serve that unfulfilled need.  Following the footsteps of Poincaré, and the renowned Andronov school of nonlinear oscillations, this book focuses on the <i>qualitative</i> study of <i>high-dimensional</i> nonlinear dynamical