|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910453383203321 |
|
|
Autore |
Mo Xiao-huan |
|
|
Titolo |
An introduction to Finsler geometry [[electronic resource] /] / Xiaohuan Mo |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Singapore ; ; Hackensack, NJ, : World Scientific, c2006 |
|
|
|
|
|
|
|
ISBN |
|
1-281-92492-X |
9786611924928 |
981-277-371-1 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (130 p.) |
|
|
|
|
|
|
Collana |
|
Peking University series in mathematics ; ; v. 1 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Finsler spaces |
Geometry, Riemannian |
Manifolds (Mathematics) |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. 117-118) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Preface; Contents; 1 Finsler Manifolds; 1.1 Historical remarks; 1.2 Finsler manifolds; 1.3 Basic examples; 1.4 Fundamental invariants; 1.5 Reversible Finsler structures; 2 Geometric Quantities on a Minkowski Space; 2.1 The Cartan tensor; 2.2 The Cartan form and Deicke's Theorem; 2.3 Distortion; 2.4 Finsler submanifolds; 2.5 Imbedding problem of submanifolds; 3 Chern Connection; 3.1 The adapted frame on a Finsler bundle; 3.2 Construction of Chern connection; 3.3 Properties of Chern connection; 3.4 Horizontal and vertical subbundles of SM |
4 Covariant Differentiation and Second Class of Geometric Invariants4.1 Horizontal and vertical covariant derivatives; 4.2 The covariant derivative along geodesic; 4.3 Landsberg curvature; 4.4 S-curvature; 5 Riemann Invariants and Variations of Arc Length; 5.1 Curvatures of Chern connection; 5.2 Flag curvature; 5.3 The first variation of arc length; 5.4 The second variation of arc length; 6 Geometry of Projective Sphere Bundle; 6.1 Riemannian connection and curvature of projective sphere bundle; 6.2 Integrable condition of Finsler bundle; 6.3 Minimal condition of Finsler bundle |
|
|
|
|