| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910453275703321 |
|
|
Autore |
Herbert Daniel <1974-> |
|
|
Titolo |
Videoland : movie culture at the American video store / / Daniel Herbert |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berkeley, California : , : University of California Press, , 2014 |
|
©2014 |
|
|
|
|
|
|
|
|
|
ISBN |
|
0-520-27963-8 |
0-520-95802-0 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (333 p.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Video rental services - Social aspects - United States |
Video recordings industry - Social aspects - United States |
Motion pictures - Social aspects - United States |
Stores, Retail - Social aspects - United States |
Electronic books. |
United States Civilization 1970- |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Front matter -- Contents -- Illustrations -- Acknowledgments -- Introduction: Video Rental and the "Shopping" of Media -- 1. A Long Tale -- 2. Practical Classifications -- 3. Video Capitals -- 4. Video Rental in Small-Town America -- 5. Distributing Value -- 6. Mediating Choice: Criticism, Advice, Metadata -- Coda: The Value of the Tangible -- Notes -- Selected Bibliography -- Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Videoland offers a comprehensive view of the "tangible phase" of consumer video, when Americans largely accessed movies as material commodities at video rental stores. Video stores served as a vital locus of movie culture from the early 1980's until the early 2000's, changing the way Americans socialized around movies and collectively made movies meaningful. When films became tangible as magnetic tapes and plastic discs, movie culture flowed out from the theater and the living room, entered the public retail space, and became conflated with shopping and salesmanship. In this process, video stores served as a crucial embodiment of movie culture's historical move toward increased |
|
|
|
|
|
|
|
|
|
|
|
|
|
flexibility, adaptability, and customization. In addition to charting the historical rise and fall of the rental industry, Herbert explores the architectural design of video stores, the social dynamics of retail encounters, the video distribution industry, the proliferation of video recommendation guides, and the often surprising persistence of the video store as an adaptable social space of consumer culture. Drawing on ethnographic fieldwork, cultural geography, and archival research, Videoland provides a wide-ranging exploration of the pivotal role video stores played in the history of motion pictures, and is a must-read for students and scholars of media history. |
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910555274103321 |
|
|
Titolo |
2D functional nanomaterials : synthesis, characterization, and applications / / edited by Ganesh S. Kamble |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Weinheim, Germany : , : Wiley-VCH, , [2022] |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
3-527-82394-8 |
3-527-82396-4 |
3-527-82395-6 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (449 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Nanostructured materials - Synthesis |
Nanostructured materials |
Nanostructures |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Cover -- Title Page -- Copyright -- Contents -- Foreword -- Preface -- Chapter 1 Graphene Chemical Derivatives Synthesis and Applications: State‐of‐the‐Art and Perspectives -- 1.1 Introduction -- 1.2 Graphene Oxide: Synthesis Methods and Chemistry Alteration -- 1.3 Graphene Oxide Reduction and Functionalization -- 1.4 |
|
|
|
|
|
|
|
|
|
Applications of CMGs -- 1.5 Concluding Remarks -- Acknowledgments -- References -- Chapter 2 2D/2D Graphene Oxide‐Layered Double Hydroxide Nanocomposite for the Immobilization of Different Radionuclides -- 2.1 Introduction -- 2.2 Synthesis of GO/LDH Composite -- 2.2.1 Co‐precipitation -- 2.2.2 Hydrothermal Preparation -- 2.2.3 Self‐Assembly of LDH Nanosheets with GO Nanosheets -- 2.3 Removal of Radionuclides -- 2.3.1 U(VI) Removal -- 2.3.2 Sorption of Eu(III) with the Presence of GO on LDH -- 2.3.3 Co‐remediation Anionic SeO42− and Cationic Sr2+ -- 2.4 Conclusion -- References -- Chapter 3 2D Nanomaterials for Biomedical Applications -- 3.1 Introduction -- 3.1.1 Photothermal and Photodynamic Therapy -- 3.1.2 Bioimaging and Drug/Gene Delivery -- 3.1.3 Biosensors -- 3.1.4 Antibacterial Activity -- 3.1.5 Tissue Engineering and Regenerative Medicine -- 3.2 Conclusions -- References -- Chapter 4 Novel Two‐Dimensional Nanomaterials for Next‐Generation Photodetectors -- 4.1 Introduction -- 4.2 2D Materials for PDs -- 4.2.1 Graphene -- 4.2.2 TMDs (Transition Metal Dichalcogenides) -- 4.2.3 MXenes (2D Transition Metal Carbides/Nitrides) -- 4.2.4 Xenes (Monoelemental 2D Materials) -- 4.3 The Physical Mechanism Enabling Photodetection -- 4.4 Characterization Parameters for Photodetectors -- 4.4.1 Responsivity -- 4.4.2 Detectivity -- 4.4.3 External Quantum Efficiency -- 4.4.4 Gain -- 4.4.5 Response Time -- 4.4.6 Noise Equivalent Power -- 4.5 Synthesis Methods for 2D Materials -- 4.5.1 Mechanical Exfoliation -- 4.5.2 Liquid Exfoliation. |
4.5.3 Chemical Vapor Deposition (CVD) -- 4.6 Photodetectors Based on 2D Materials -- 4.6.1 Photodetectors Based on Graphene -- 4.6.2 Photodetectors Based on MoS2 -- 4.6.3 Photodetectors Based on BP -- 4.7 Photodetectors Based on 2D Heterostructures -- 4.8 Conclusions and Outlook -- References -- Chapter 5 2D Nanomaterials for Cancer Therapy -- 5.1 Introduction -- 5.2 2D Nanomaterials for Cancer Therapy -- 5.2.1 2D Nanomaterials for Combination PTT with PDT -- 5.2.2 2D‐Nanomaterials for Combination PTT Therapy with Radiotherapy (RT) -- 5.2.3 2D Nanomaterials for Combination PTT Therapy with Sonodynamic Therapy (SDT) -- 5.2.4 2D Nanomaterials for Combination PTT Therapy with Immune Therapy (ImT) -- 5.3 Summary and Future Perspectives -- References -- Chapter 6 Graphene and Its Derivatives - Synthesis and Applications -- 6.1 Introduction -- 6.2 Graphite -- 6.2.1 Define -- 6.2.2 Synthetic Graphite -- 6.2.3 Characterized and Properties of Graphite -- 6.2.3.1 Structure -- 6.2.4 Applications -- 6.3 Graphene Oxide -- 6.3.1 Define -- 6.3.2 Synthetic of Graphene Oxide -- 6.3.3 Characterized and Properties of Graphene Oxide -- 6.3.3.1 Structure -- 6.3.3.2 Properties of Graphene Oxide -- 6.3.3.3 Applications of Graphene Oxide -- 6.3.3.4 Few Examples -- 6.4 Reduced Graphene Oxide -- 6.4.1 Define -- 6.4.2 Synthetic of Reduced Graphene Oxide or Reduction of Graphene Oxide -- 6.4.2.1 Thermal Reduction of GO -- 6.4.2.2 Photocatalytic Method -- 6.4.2.3 Electrochemical Method -- 6.4.2.4 Other Methods -- 6.4.3 Characterized, Structure, and Properties of Reduced Graphene Oxide -- 6.4.3.1 Structure -- 6.4.3.2 Properties and Applications of Reduced Graphene Oxide -- 6.5 Graphene -- 6.5.1 Define -- 6.5.2 Synthesis of Graphene -- 6.5.2.1 Chemical Vapor Deposition (CVD) -- 6.5.2.2 Epitaxial Growth -- 6.5.2.3 Mechanical Exfoliation. |
6.5.2.4 Chemical Reduction of Graphene Oxide (GO) -- 6.5.3 Characterized, Structure, and Properties of Graphene -- 6.5.3.1 Surface Properties -- 6.5.3.2 Electronic Properties -- 6.5.3.3 Optical Properties -- 6.5.3.4 Mechanical Properties -- 6.5.3.5 Thermal Properties -- 6.5.3.6 Photocatalytic Properties -- 6.5.3.7 Magnetic Properties -- 6.5.3.8 Characterizations of Graphene -- 6.5.3.9 Morphology (SEM, |
|
|
|
|
|
|
|
TEM, and AFM) -- 6.5.3.10 Raman Spectroscopy -- 6.5.3.11 X‐ray Photoelectron Spectroscopy (XPS) -- 6.5.3.12 UV-Visible Spectroscopy -- 6.5.3.13 X‐ray Diffraction (XRD) -- 6.5.3.14 Thermogravimetric Analysis (TGA) -- 6.5.3.15 FTIR Spectroscopy -- 6.5.4 Application of Graphene -- References -- Chapter 7 Recent Trends in Graphene - Latex Nanocomposites -- 7.1 Introduction -- 7.2 Polymer Lattices - An Overview -- 7.3 Graphene - Background -- 7.4 Preparation and Functionalization of Graphene -- 7.5 Graphene - Latex Nanocomposites: Preparation Properties and Applications -- 7.6 Conclusions -- References -- Chapter 8 Advanced Characterization and Techniques -- 8.1 Introduction -- 8.2 Characterization Techniques -- 8.2.1 Optical Techniques - Dynamic Light Scattering (DLS) -- 8.2.2 Optical Spectroscopy -- 8.2.3 NMR‐Nuclear Magnetic Resonance Spectroscopy -- 8.2.4 Infrared Spectroscopy (IR) and Raman Spectroscopy -- 8.2.5 X‐Ray Photoelectron Spectroscopy (XPS) -- 8.2.6 Characterization Based on Interactions with Electrons or Electron Microscopy (EM) -- 8.2.6.1 Scanning Electron Microscopy (SEM) -- 8.2.6.2 Transmission Electron Microscopy (TEM) -- 8.2.6.3 Scanning Transmission Electron Microscopy (STEM) -- 8.2.6.4 Scanning Tunneling Microscopy (STM) -- 8.2.7 Atomic Force Microscopy (AFM) -- 8.2.8 Kelvin Probe Force Microscopy (KPFM) -- 8.2.9 X‐Ray‐Based Techniques -- References -- Chapter 9 2D Nanomaterials: Sustainable Materials for Cancer Therapy Applications. |
9.1 Introduction -- 9.2 Types of 2D Nanomaterials -- 9.3 Methods for the Synthesis of 2D Nanomaterials -- 9.4 Mechanism of Cancer Theranostics -- 9.5 Applications of 2D Nanomaterials -- 9.6 Conclusion -- References -- Chapter 10 Recent Advances in Functional 2D Materials for Field Effect Transistors and Nonvolatile Resistive Memories -- 10.1 Introduction to 2D Materials -- 10.2 Electronic Band Structure in 2D Materials -- 10.3 Electronic Transport Properties of 2D Materials -- 10.4 Two‐Dimensional Materials in Field Effect Transistors -- 10.4.1 Field Effect Transistors -- 10.4.2 The Rise of 2D Materials Research in FETs -- 10.4.3 Graphene‐Based Field Effect Transistors -- 10.4.4 2D Transition Metal Dichalcogenides (TMDCs) in Transistors -- 10.5 Two‐Dimensional Materials as Nonvolatile Resistive Memories -- 10.5.1 Nonvolatile Resistive Memories Based on Graphene and Its Derivatives -- 10.5.2 Resistive Switching Memories in 2D Materials "Beyond" Graphene -- 10.5.2.1 Solution‐Processed MoS2‐Based Resistive Memories -- 10.5.2.2 Solution‐Processed Black Phosphorous Nonvolatile Resistive Memories -- 10.5.2.3 Emerging NVM Based on Hexagonal Boron Nitride (h‐BN) -- 10.6 Conclusions and Outlook -- References -- Chapter 11 2D Advanced Functional Nanomaterials for Cancer Therapy -- 11.1 Introduction -- 11.2 2D Nanomaterials Classification -- 11.2.1 Graphene Family Nanomaterials -- 11.2.2 Transition Metal Dichalcogenides (TMDs) -- 11.2.3 Layered Double Hydroxides (LDHs) -- 11.2.4 Carbonitrides (MXenes) -- 11.2.5 Black Phosphorus (BP) -- 11.3 Cancer Therapy -- 11.3.1 Mechanism of Action in Cancer Therapy -- 11.3.1.1 Mode of Action of 2D Nanomaterials -- 11.3.2 Photodynamic Therapy for Cancer Cell Treatment -- 11.3.2.1 Mechanism of Photodynamic Therapy -- 11.3.2.2 2D Nanomaterials as Photosensitizer for PDT. |
11.3.2.3 Application of 2D Nanomaterials in Photodynamic Therapy -- 11.3.3 2D Nanomaterials‐Cancer Detection/Diagnosis/Theragnostic -- 11.4 Tissue Engineering -- 11.5 Conclusion -- Acknowledgment -- References -- Chapter 12 Synthesis of Nanostructured Materials Via Green and Sol-Gel Methods: A Review -- 12.1 Introduction -- 12.2 Methods Used in Nanostructured Synthesis -- 12.2.1 Green Method of Nanoparticles Synthesis -- 12.2.2 Sol-Gel Method of Nanoparticles |
|
|
|
|
|
|
|
|
Synthesis -- 12.2.3 Green Method of Nanocomposites Synthesis -- 12.2.4 Sol-Gel Method of Nanocomposites -- 12.3 Discussion -- 12.4 Conclusion -- References -- Chapter 13 Study of Antimicrobial Activity of ZnO Nanoparticles Using Leaves Extract of Ficus auriculata Based on Green Chemistry Principles -- 13.1 Introduction -- 13.2 Materials and Methods -- 13.2.1 Chemicals -- 13.2.2 Methodology -- 13.2.3 Antimicrobial Activity -- 13.3 Results and Discussion -- 13.3.1 Characterization of Synthesized Zinc‐Oxide Nanoparticles (ZnONPs) -- 13.3.1.1 XRD Analysis -- 13.3.1.2 FT‐IR Analysis -- 13.3.1.3 SEM Analysis -- 13.3.1.4 TEM Analysis -- 13.3.2 Antibacterial Activity -- 13.4 Conclusion -- Acknowledgments -- References -- Chapter 14 Piezoelectric Properties of Na1−xKxNbO3 near x & -- equals -- 0.475, Morphotropic Phase Region -- 14.1 Introduction -- 14.2 Experimental Procedure -- 14.3 Results and Discussion -- References -- Chapter 15 Synthesis and Characterization of SDC Nano‐Powder for IT‐SOFC Applications -- 15.1 Introduction -- 15.1.1 Solid Oxide Fuel Cells (SOFCs) -- 15.1.2 Intermediate Temperature Solid Oxide Fuel Cells (IT‐SOFCs) -- 15.1.3 Why Samarium‐Doped Ceria (SDC) Material? -- 15.1.4 Various Synthesis Methods for SDC -- 15.1.5 Why SDC Synthesis by Combustion Process? -- 15.1.6 Why SDC Synthesis by Glycine Nitrate Combustion Process (GNP)?. |
15.1.7 Applications of SDC Material Related to Intermediate Temperature Solid Oxide Fuel Cells. |
|
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNISANNIOPAL0232654 |
|
|
Titolo |
Contratti di fiume : pianificazione strategica e partecipata dei bacini idrografici : [approcci, esperienze, casi studio] / a cura di Massimo Bastiani |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Palermo, : Flaccovio, 2011 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
XXVIII, 588 p. : ill. ; 24 cm |
|
|
|
|
|
|
Collana |
|
Collana Sigea di geologia ambientale |
A : Ambiente |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Collocazione |
|
SALA 627.12 CON01SALA 627.12 CON |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
| |