1.

Record Nr.

UNINA9910452540803321

Autore

Bein Andrew M

Titolo

Dialectical behavior therapy for wellness and recovery : interventions and activities for diverse client needs / / Andrew Bein

Pubbl/distr/stampa

Hoboken, New Jersey : , : Wiley, , 2013

ISBN

1-118-75997-4

1-118-69061-3

Descrizione fisica

1 online resource (274 p.)

Classificazione

PSY038000PSY036000

Disciplina

616.89/142

Soggetti

Clinical health psychology

Dialectical behavior therapy

Mental health

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Machine generated contents note:  Chapter One Applying Dialectical Behavior Therapy: Toward Access for Diverse Client Needs Gifts of Dialectical Behavior Therapy Chapter Two Emotion Regulation and Resilience: Developing Wise Mind Emotion Regulation Strategies and Helping Framework The Skillfulness Of Intention: Am I In Wise Mind? The Intention of Self-Compassion Mindfulness of the Moment Responding To Emotions in the Moment Expanding the Moment: Resilience-Building and the Bigger Picture Validation and Acceptance to Support Client Change Chapter Three Applying DBT to Mental Health and Substance Abuse Recovery Practicing Mental Health Recovery in DBT-WR Motivational Interviewing Substance Abuse Recovery Chapter Four Accounting for Trauma Overview Trauma to Normalize Emotion Regulation Challenges Neuroscience Engenders Hope and Interest Acknowledgment of Trauma and Extreme Stress Validates Clients Being Mindful of Trauma in the Here-and-Now Resilient Zone Chapter Five Clinician's Use-of-Self: Foundation for Effective Practice Strong Back, Soft Front Use-of-Self Interface with Radical Acceptance Intention and Mindfulness Fueling Effective Practice Use-of-Self with Challenging Clients and Circumstances Responding to Diversity as Opportunity Not



as Nuisance Practitioner Non-Defensiveness Language of Invitation Use-of-Self Summary Chapter Six Lessons and Activities: Dialectical Behavior Therapy for Wellness and Recovery Principles for Using Lessons Session Structure and Flow Homework Approaching the Lessons with a Light-Hearted Spirit Lesson 1: Mindfulness and the Brain Lesson 2: Facing Emotions & Thoughts & Improving the Moment Lesson 3: Dealing With Judgments Lesson 4: Expanding the Moment Lesson 5: Dealing with Difficult Times: Lesson 6: Opposite Action Lesson 7: Not Getting Stuck Doing the Usual Exercise 8: Friend to Self: Willing Participation and Mindful Walking Lesson 9: Primary and Secondary Emotions Lesson 10: Friend to Self: Doing what is Needed & Self-Care Lesson 11: Getting Grounded: Finding Wellness Amidst Distress, Anxiety, and Worry Lesson 12: Finding the Zone: Moving from Suffering to Balance Lesson13: Self-Nurturance and Joy Lesson14: Effective Speech and Telling the Truth Lesson 15: Inspiring the World with Our Courage and Path REFERENCES APPENDIX .

Sommario/riassunto

"This hands-on guide addresses the present day realities of applying dialectical behavior therapy in a mental health and substance abuse recovery context. The book presents the DBT concept, Wise Mind, as developed by author Andrew Bein, as central to a simple, powerful, empirically supported framework that respectfully engages clients in their own efforts to enhance personal well-being. The book includes empirically supported exercises with an emphasis on collaboration and client empowerment using a recovery oriented model for client treatment and improved outcomes"--



2.

Record Nr.

UNINA9910548172003321

Autore

Mochizuki Takuro <1972->

Titolo

Periodic Monopoles and Difference Modules / / by Takuro Mochizuki

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022

ISBN

9783030945008

9783030944995

Edizione

[1st ed. 2022.]

Descrizione fisica

1 online resource (336 pages)

Collana

Lecture Notes in Mathematics, , 1617-9692 ; ; 2300

Disciplina

516.36

Soggetti

Geometry, Differential

Mathematical physics

Geometry, Algebraic

Differential Geometry

Mathematical Physics

Algebraic Geometry

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Intro -- Preface -- Acknowledgements -- Contents -- 1 Introduction -- 1.1 Background and Motivation -- 1.2 Monopoles of GCK-Type -- 1.3 Previous Works on Monopoles and Algebraic Objects -- 1.3.1 SU(2)-Monopoles with Finite Energy on R3 -- 1.3.2 The Correspondence due to Charbonneau and Hurtubise -- 1.3.3 Remark -- 1.4 Review of the Kobayashi-Hitchin Correspondences for λ-Flat Bundles -- 1.4.1 Harmonic Bundles and Their Underlying λ-Flat Bundles -- 1.4.2 Kobayashi-Hitchin Correspondences in the Smooth Case -- 1.4.3 Tame Harmonic Bundles and Regular Filtered λ-Flat Bundles -- 1.4.4 Wild Harmonic Bundles and Good Filtered λ-Flat Bundles -- 1.5 Equivariant Instantons and the Underlying Holomorphic Objects -- 1.5.1 Instantons and the Underlying Holomorphic Bundles -- 1.5.2 Instantons and Harmonic Bundles -- 1.5.3 Instantons and Monopoles -- 1.5.4 Instantons and Monopoles as Harmonic Bundles of Infinite Rank -- 1.5.4.1 Instantons as Harmonic Bundles of Infinite Rank -- 1.5.4.2 The Underlying λ-Flat Bundles of Infinite Rank -- 1.5.4.3 Monopoles as Harmonic Bundles of Infinite Rank -- 1.6 Difference Modules with



Parabolic Structure -- 1.6.1 Difference Modules -- 1.6.2 Parabolic Structure of Difference Modules at Finite Place -- 1.6.3 Good Parabolic Structure at ∞ -- 1.6.4 Parabolic Difference Modules -- 1.6.5 Degree and Stability Condition -- 1.6.6 Easy Examples of Stable Parabolic Difference Modules (1) -- 1.6.6.1 The Case Where (∞) Is Even -- 1.6.6.2 The Case Where (∞) Is Odd -- 1.6.7 Easy Examples of Stable Parabolic Difference Modules (2) -- 1.7 Kobayashi-Hitchin Correspondences for Periodic Monopoles -- 1.7.1 The Correspondence in the Case λ=0 -- 1.7.1.1 Mini-complex Structure -- 1.7.1.2 Mini-holomorphic Bundles Associated with Monopoles -- 1.7.1.3 Dirac Type Singularity -- 1.7.1.4 Meromorphic Extension and Filtered Extension at Infinity.

1.7.1.5 Kobayashi-Hitchin Correspondence in the Case λ=0 -- 1.7.1.6 OM0Z(H0∞)-Modules and C(w)-Modules with an Automorphism -- 1.7.2 The Correspondences in the General Case -- 1.7.2.1 Preliminary Consideration -- 1.7.2.2 Mini-complex Structure Corresponding to the Twistor Parameter λ -- 1.7.2.3 Another Coordinate System and the Compactification of Mλ -- 1.7.2.4 Mini-holomorphic Bundles Associated with Monopoles -- 1.7.2.5 Meromorphic Extension and Filtered Extension at Infinity -- 1.7.2.6 Kobayashi-Hitchin Correspondence of Periodic Monopoles of GCK Type -- 1.7.2.7 Difference Modules and OMλZ (Hλ∞)-Modules -- 1.8 Asymptotic Behaviour of Periodic Monopoles of GCK-Type -- 1.8.1 Setting -- 1.8.2 Decomposition of Mini-holomorphic Bundles -- 1.8.3 The Induced Higgs Bundles -- 1.8.3.1 Preliminary (1) -- 1.8.3.2 Preliminary (2) -- 1.8.3.3 The Induced Higgs Bundles -- 1.8.4 Asymptotic Orthogonality -- 1.8.5 Curvature Decay -- 1.8.6 The Filtered Extension in the Case λ=0 -- 1.8.7 The Filtered Extension for General λ -- 1.8.7.1 Ramified Covering Space -- 1.8.7.2 Approximation -- 1.8.7.3 Formal Completion of Asymptotic Harmonic Bundles at Infinity -- 1.8.7.4 The Formal Structure of PhEλ at Infinity -- 2 Preliminaries -- 2.1 Outline of This Chapter -- 2.2 Mini-Complex Structures on 3-Manifolds -- 2.2.1 Mini-Holomorphic Functions on RC -- 2.2.2 Mini-Complex Structure on Three-Dimensional Manifolds -- 2.2.3 Tangent Bundles -- 2.2.4 Cotangent Bundles -- 2.2.5 Meromorphic Functions -- 2.3 Mini-Holomorphic Bundles -- 2.3.1 Mini-Holomorphic Bundles -- 2.3.2 Metrics and the Induced Operators -- 2.3.3 Splittings -- 2.3.4 Scattering Maps -- 2.3.5 Dirac Type Singularity of Mini-Holomorphic Bundles -- 2.3.6 Kronheimer Resolution of Dirac Type Singularity -- 2.3.7 Precise Description of Dirac Type Singularities -- 2.3.8 Subbundles and Quotient Bundles.

2.3.9 Basic Functoriality -- 2.4 Monopoles -- 2.4.1 Monopoles and Mini-Holomorphic Bundles -- 2.4.2 Euclidean Monopoles -- 2.4.3 Dirac Type Singularity -- 2.4.3.1 Dirac Monopoles (Examples) -- 2.4.4 Basic Functoriality -- 2.5 Dimensional Reduction from 4D to 3D -- 2.5.1 Instantons Induced by Monopoles -- 2.5.2 Holomorphic Bundles and Mini-Holomorphic Bundles -- 2.6 Dimensional Reduction from 3D to 2D -- 2.6.1 Monopoles Induced by Harmonic Bundles -- 2.6.2 Mini-Holomorphic Bundles Induced by Holomorphic Bundles with a Higgs Field -- 2.6.3 Mini-Holomorphic Sections and Monodromy -- 2.6.4 Appendix: Monopoles as Harmonic Bundles of Infinite Rank -- 2.7 Twistor Families of Mini-Complex Structures on RC and (R/TZ)C -- 2.7.1 Preliminary -- 2.7.2 Spaces -- 2.7.3 Twistor Family of Complex Structures -- 2.7.4 Family of Mini-Complex Structures -- 2.7.5 The Mini-Complex Coordinate System (t0,β0) -- 2.7.6 The Mini-Complex Coordinate System (t1,β1) -- 2.7.7 Coordinate Change -- 2.7.8 Compactification -- 2.7.9 Mini-Holomorphic Bundles Associated with Monopoles -- 2.7.9.1 Compatibility with the Dimensional Reduction



from 4D to 3D -- 2.8 OMλ-Modules and λ-Connections -- 2.8.1 Dimensional Reduction from OMλ-Modules to λ-Flat Bundles -- 2.8.1.1 Setting -- 2.8.1.2 Some Vector Fields and Forms -- 2.8.1.3 A General Equivalence -- 2.8.1.4 Mini-Holomorphic Bundles and Flat λ-Connections -- 2.8.1.5 λ-Flat Bundles of Infinite Rank -- 2.8.1.6 Remark -- 2.8.2 Comparison of Some Induced Operators -- 2.8.2.1 Comparison of Mini-Holomorphic Bundles Induced by Harmonic Bundles -- 2.8.3 OMλ-Modules and λ-Connections -- 2.8.3.1 Setting -- 2.8.3.2 A General Equivalence -- 2.8.3.3 Mini-Holomorphic Bundles and Meromorphic Flat λ-Connections -- 2.8.3.4 Another Description of the Construction -- 2.9 Curvatures of Mini-Holomorphic Bundles with Metric on Mλ.

2.9.1 Contraction of Curvature and Analytic Degree -- 2.9.2 Chern-Weil Formula -- 2.9.3 Another Description of G(h) -- 2.9.4 Change of Metrics -- 2.9.5 Relation with λ-Connections -- 2.9.5.1 λ-Flat Bundles of Infinite Rank with a Harmonic Metric -- 2.9.5.2 Remark -- 2.9.6 Dimensional Reduction of Kronheimer -- 2.9.7 Appendix: Ambiguity of the Choice of a Splitting -- 2.10 Difference Modules and OMλZ(Hλ∞)-Modules -- 2.10.1 Difference Modules with Parabolic Structure at Finite Place -- 2.10.2 Construction of Difference Modules from OMλZ(Hλ∞)-Modules -- 2.10.3 Construction of OMλZ(Hλ)-Modules from Difference Modules -- 2.10.4 Appendix: Mellin Transform and Parabolic Structures at Finite Place -- 2.10.4.1 Mellin Transform -- 2.10.4.2 Algebraic Nahm Transform for Filtered λ-Flat Bundles (Special Case) -- 2.11 Filtered Prolongation of Acceptable Bundles -- 2.11.1 Filtered Bundles on a Neighbourhood of 0 in C -- 2.11.1.1 G-Equivariance -- 2.11.1.2 Subbundles, Quotient and Splitting -- 2.11.1.3 Basic Functoriality -- 2.11.1.4 Pull Back -- 2.11.1.5 Push-Forward -- 2.11.1.6 Descent -- 2.11.1.7 Some Examples -- 2.11.2 Acceptable Bundles on a Punctured Disc -- 2.11.2.1 Basic Functoriality -- 2.11.2.2 Pull Back and Descent -- 2.11.3 Global Case -- 2.11.3.1 Filtered Bundles -- 2.11.3.2 Acceptable Bundles -- 3 Formal Difference Modules and Good Parabolic Structure -- 3.1 Outline of This Chapter -- 3.2 Formal Difference Modules -- 3.2.1 Formal Difference Modules of Level ≤1 -- 3.2.2 Formal Difference Modules of Pure Slope -- 3.2.3 Slope Decomposition of Formal Difference Modules -- 3.3 Good Filtered Bundles of Formal Difference Modules -- 3.3.1 Filtered Bundles over C((yq-1))-Modules -- 3.3.1.1 G-Equivariance -- 3.3.1.2 Submodules, Quotient Modules and Splittings -- 3.3.1.3 Basic Functoriality -- 3.3.1.4 Pull Back -- 3.3.1.5 Push-Forward -- 3.3.1.6 Descent.

3.3.2 Good Filtered Bundles over Formal Difference Modules -- 3.3.3 The Induced Endomorphisms on the Graded Pieces -- 3.4 Geometrization of Formal Difference Modules -- 3.4.1 Ringed Spaces -- 3.4.2 Some Formal Spaces -- 3.4.3 Difference Modules and OH∞,q(H∞,q)-Modules -- 3.4.4 Lattices and the Induced Local Systems -- 3.5 Filtered Bundles in the Formal Case -- 3.5.1 Pull Back and Descent of OH∞,p(H∞,p)-Modules -- 3.5.2 Filtered Bundles -- 3.5.2.1 Subbundles and Quotient Bundles -- 3.5.2.2 Basic Functoriality -- 3.5.2.3 Pull Back -- 3.5.2.4 Push-Forward -- 3.5.2.5 Descent -- 3.5.3 Basic Filtered Objects with Pure Slope -- 3.5.4 Good Filtered Bundles over OH∞,q(H∞,q)-Modules with Level ≤1 -- 3.5.5 Good Filtered Bundles over OH∞,q(H∞,q)-Modules -- 3.5.5.1 An Equivalence -- 3.5.5.2 Some Properties -- 3.5.6 Global Lattices on the Covering Space -- 3.5.7 Local Lattices -- 3.5.8 Complement for Good Filtered Bundles with Level ≤1 -- 3.6 Formal Difference Modules of Level ≤1 and Formal λ-Connections -- 3.6.1 Formal λ-Connections -- 3.6.2 Some Sheaves of Algebras on H∞,q -- 3.6.3 From Formal λ-Connections to Formal Difference Modules -- 3.6.4 Equivalence -- 3.6.4.1 Simpler Cases of



Proposition 3.6.8 -- 3.6.5 Example 1 -- 3.6.5.1 -- 3.6.5.2 -- 3.6.6 Example 2 -- 3.6.6.1 -- 3.6.6.2 -- 3.6.7 Comparison of Good Filtered Bundles -- 3.6.8 Comparison of the Associated Graded Pieces -- 3.6.9 Some Functoriality -- 3.7 Appendix: Pull Back and Descent in the R-Direction -- 3.7.1 Examples -- 4 Filtered Bundles -- 4.1 Outline of This Chapter -- 4.2 Filtered Bundles in the Global Case -- 4.2.1 Subbundles and Quotient Bundles -- 4.2.2 Degree and Slope -- 4.2.3 Stability Condition -- 4.2.4 Good Filtered Bundles of Dirac Type and Parabolic Difference Modules -- 4.2.4.1 Polystable Parabolic Difference Modules -- 4.2.4.2 Equivalence -- 4.3 Filtered Bundles on Ramified Coverings.

4.3.1 The Case λ=0.

Sommario/riassunto

This book studies a class of monopoles defined by certain mild conditions, called periodic monopoles of generalized Cherkis–Kapustin (GCK) type. It presents a classification of the latter in terms of difference modules with parabolic structure, revealing a kind of Kobayashi–Hitchin correspondence between differential geometric objects and algebraic objects. It also clarifies the asymptotic behaviour of these monopoles around infinity. The theory of periodic monopoles of GCK type has applications to Yang–Mills theory in differential geometry and to the study of difference modules in dynamical algebraic geometry. A complete account of the theory is given, including major generalizations of results due to Charbonneau, Cherkis, Hurtubise, Kapustin, and others, and a new and original generalization of the nonabelian Hodge correspondence first studied by Corlette, Donaldson, Hitchin and Simpson. This work will be of interest to graduatestudents and researchers in differential and algebraic geometry, as well as in mathematical physics.