|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910451750403321 |
|
|
Autore |
Ize Jorge <1946-> |
|
|
Titolo |
Equivariant degree theory [[electronic resource] /] / Jorge Ize, Alfonso Vignoli |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin ; ; New York, : Walter de Gruyter, 2003 |
|
|
|
|
|
|
|
ISBN |
|
1-282-19503-4 |
9786612195037 |
3-11-916004-0 |
3-11-020002-3 |
|
|
|
|
|
|
|
|
Edizione |
[Reprint 2012] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (384 p.) |
|
|
|
|
|
|
Collana |
|
De Gruyter series in nonlinear analysis and applications, , 0941-813X ; ; 8 |
|
|
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Topological degree |
Homotopy groups |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. [337]-358) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Front matter -- Preface -- Contents -- Introduction -- Chapter 1. Preliminaries -- Chapter 2. Equivariant Degree -- Chapter 3. Equivariant Homotopy Groups of Spheres -- Chapter 4. Equivariant Degree and Applications -- Appendix A. Equivariant Matrices -- Appendix Β. Periodic Solutions of Linear Systems -- Bibliography -- Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book presents a new degree theory for maps which commute with a group of symmetries. This degree is no longer a single integer but an element of the group of equivariant homotopy classes of maps between two spheres and depends on the orbit types of the spaces. The authors develop completely the theory and applications of this degree in a self-contained presentation starting with only elementary facts. The first chapter explains the basic tools of representation theory, homotopy theory and differential equations needed in the text. Then the degree is defined and its main abstract properties. |
|
|
|
|
|
|
|