| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910451334603321 |
|
|
Autore |
Hillman Jonathan A (Jonathan Arthur), <1947-> |
|
|
Titolo |
Algebraic invariants of links [[electronic resource] /] / Jonathan Hillman |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
River Edge, NJ, : World Scientific, c2002 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (321 p.) |
|
|
|
|
|
|
Collana |
|
K & E series on knots and everything ; ; v. 32 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Link theory |
Invariants |
Abelian groups |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliography (p. 277-298) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Contents ; Preface ; Part 1. Abelian Covers ; Chapter 1. Links ; 1.1. Basic notions ; 1.2. The link group ; 1.3. Homology boundary links ; 1.4. Z/2Z-boundary links ; 1.5. Isotopy concordance and /-equivalence ; 1.6. Link homotopy and surgery ; 1.7. Ribbon links |
1.8. Link-symmetric groups 1.9. Link composition ; Chapter 2. Homology and Duality in Covers ; 2.1. Homology and cohomology with local coefficients ; 2.2. Covers of link exteriors ; 2.3. Poincare duality and the Blanchfield pairings ; 2.4. The total linking number cover |
2.5. The maximal abelian cover 2.6. Concordance ; 2.7. Additivity ; 2.8. The Seifert approach for boundary 1-links ; 2.9. Signatures ; Chapter 3. Determinantal Invariants ; 3.1. Elementary ideals ; 3.2. The Elementary Divisor Theorem ; 3.3. Extensions |
3.4. Reidemeister-Franz torsion 3.5. Steinitz-Fox-Smythe invariants ; 3.6. 1- and 2-dimensional rings ; 3.7. Bilinear pairings |
|
|
|
|
|
|
|
|
|
|
|
; Chapter 4. The Maximal Abelian Cover ; 4.1. Metabelian groups and the Crowell sequence ; 4.2. Free metabelian groups ; 4.3. Link module sequences |
4.4. Localization of link module sequences 4.5. Chen groups ; 4.6. Applications to links ; 4.7. Chen groups nullity and longitudes ; 4.8. I-equivalence ; 4.9. The sign-determined Alexander polynomial ; 4.10. Higher dimensional links ; Chapter 5. Sublinks and Other Abelian Covers |
5.1. The Torres conditions |
|
|
|
|
|
|
Sommario/riassunto |
|
This book is intended as a reference on links and on the invariants derived via algebraic topology from covering spaces of link exteriors. It emphasizes features of the multicomponent case not normally considered by knot theorists, such as longitudes, the homological complexity of many-variable Laurent polynomial rings, free coverings of homology boundary links, the fact that links are not usually boundary links, the lower central series as a source of invariants, nilpotent completion and algebraic closure of the link group, and disc links. Invariants of the types considered here play an esse |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910812833403321 |
|
|
Titolo |
Vodou in the Haitian experience : a Black Atlantic perspective / / edited by Celucien L. Joseph and Nixon S. Cleophat |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Lanham, Maryland : , : Lexington Books, , 2016 |
|
©2016 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (290 p.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Contents; List of Figures; Acknowledgments; Introduction; Part I. Vodou, Anthropology, Art, Performance, and the Black Diaspora; 1 Roots / Routes / Rasin; 2 Circling the Cosmogram; 3 Speaking the Past; 4 Decoding Dress; Part II. Vodou and African Traditional Religions; 5 The African Origin of Haitian Vodou; 6 The Vodun Has Killed Them; 7 The Vibratory Art of Haiti; 8 Ethnographic Interpretations of Traditional African Religious Practices and Haitian Vodou Ceremonial Rites in Zora Neale Hurston's Tell My Horse and Maya Deren's Divine Horsemen; 9 Oversouls and Egregores in Vodou |
10 Arabian Religion, Islam, and Haitian VodouBibliography; Index; About the Contributors |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This collection studies comparatively the connections and relationships between Vodou and African traditional religions such as Yoruba religion and Egyptian religion. Vodou is also studied from multiple theoretical approaches including queer, feminist theory, critical race theory, Marxism, postcolonial criticism, postmodernism, and psychoanalysis. |
|
|
|
|
|
|
|
| |