|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910451244703321 |
|
|
Autore |
Göbel R (Rüdiger), <1940-> |
|
|
Titolo |
Approximations and endomorphism algebras of modules [[electronic resource] /] / by Rüdiger Göbel and Jan Trlifaj |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin ; ; New York, : Walter de Gruyter, 2006 |
|
|
|
|
|
|
|
ISBN |
|
1-282-19483-6 |
9786612194832 |
3-11-019972-6 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (664 p.) |
|
|
|
|
|
|
Collana |
|
De Gruyter expositions in mathematics ; ; 41 |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Modules (Algebra) |
Moduli theory |
Approximation theory |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Front matter -- Contents -- Chapter 1. Some useful classes of modules -- Chapter 2. Approximations of modules -- Chapter 3. Complete cotorsion pairs -- Chapter 4. Deconstruction of cotorsion pairs -- Chapter 5. Tilting approximations -- Chapter 6. 1-tilting modules and their applications -- Chapter 7. Tilting approximations and the finitistic dimension conjectures -- Chapter 8. Cotilting modules -- Chapter 9. The Black Box and its relatives -- Chapter 10. Independence results for cotorsion pairs -- Chapter 11. The lattice of cotorsion pairs -- Chapter 12. Realizing algebras - by algebraically independent elements and by prediction principles -- Chapter 13. E(R)-algebras -- Chapter 14. Modules with distinguished submodules -- Chapter 15. Some useful classes of algebras -- Backmatter |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
The category of all modules over a general associative ring is too complex to admit any reasonable classification. Thus, unless the ring is of finite representation type, one must limit attempts at classification to some restricted subcategories of modules. The wild character of the category of all modules, or of one of its subcategories C is often indicated by the presence of a realization theorem, that is, by the fact |
|
|
|
|