|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910450677003321 |
|
|
Autore |
Ramm A. G (Alexander G.) |
|
|
Titolo |
Wave scattering by small bodies of arbitrary shapes [[electronic resource] /] / Alexander G. Ramm |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Hackensack, NJ ; ; London, : World Scientific, c2005 |
|
|
|
|
|
|
|
ISBN |
|
1-281-89696-9 |
9786611896966 |
981-270-120-6 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (313 p.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Waves - Mathematics |
Scattering (Physics) - Mathematics |
Electrostatics - Mathematics |
Iterative methods (Mathematics) |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliography and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Preface; Contents; Introduction; Chapter 1 Basic Problems; Chapter 2 Iterative Processes for Solving Fredholm's Integral Equations for Static Problems; Chapter 3 Calculating Electric Capacitance; Chapter 4 Numerical Examples; Chapter 5 Calculating Polarizability Tensors; Chapter 6 Iterative Methods: Mathematical Results; Chapter 7 Wave Scattering by Small Bodies; Chapter 8 Fredholm Alternative and a Characterization of Fredholm Operators; Chapter 9 Boundary-Value Problems in Rough Domains; Chapter 10 Low Frequency Asymptotics; Chapter 11 Finding Small Inhomogeneities from Scattering Data |
Chapter 12 Modified Rayleigh Conjecture and Applications Appendix A Optimal with Respect to Accuracy Algorithms for Calculation of Multidimensional Weakly Singular Integrals and Applications to Calculation of Capacitances of Conductors of Arbitrary Shapes; Problems; Bibliographical Notes; Bibliography; List of Symbols; Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book presents analytical formulas which allow one to calculate the S-matrix for the acoustic and electromagnetic wave scattering by small bodies or arbitrary shapes with arbitrary accuracy. Equations for the |
|
|
|
|