|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910450446303321 |
|
|
Autore |
Dong F. M. <1962-> |
|
|
Titolo |
Chromatic polynomials and chromaticity of graphs [[electronic resource] /] / F.M. Dong, K.M. Koh and K.L. Teo |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New Jersey ; ; Hong Kong, : World Scientific Pub., 2005 |
|
|
|
|
|
|
|
ISBN |
|
1-281-88109-0 |
9786611881092 |
981-256-946-4 |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (386 p.) |
|
|
|
|
|
|
Altri autori (Persone) |
|
KohK. M <1944-> (Khee Meng) |
TeoK. L |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Graph coloring |
Graph theory |
Polynomials |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. 327-352) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Preface; Contents; Basic Concepts in Graph Theory; Notation; Chapter 1 The Number of -Colourings and Its Enumerations; Chapter 2 Chromatic Polynomials; Chapter 3 Chromatic Equivalence of Graphs; Chapter 4 Chromaticity of Multi-Partite Graphs; Chapter 5 Chromaticity of Subdivisions of Graphs; Chapter 6 Graphs in Which any Two Colour Classes Induce a Tree (I); Chapter 7 Graphs in Which any Two Colour Classes Induce a Tree (II); Chapter 8 Graphs in Which All but One Pair of Colour Classes Induce Trees (I); Chapter 9 Graphs in Which All but One Pair of Colour Classes Induce Trees (II) |
Chapter 10 Chromaticity of Extremal 3-Colourable GraphsChapter 11 Polynomials Related to Chromatic Polynomials; Chapter 12 Real Roots of Chromatic Polynomials; Chapter 13 Integral Roots of Chromatic Polynomials; Chapter 14 Complex Roots of Chromatic Polynomials; Chapter 15 Inequalities on Chromatic Polynomials; Bibliography; Index |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This is the first book to comprehensively cover chromatic polynomialsof graphs. It includes most of the known results and unsolved problemsin the area of chromatic polynomials. Dividing the |
|
|
|
|