1.

Record Nr.

UNINA9910450182303321

Autore

Deza M. <1934->

Titolo

Scale-isometric polytopal graphs in hypercubes and cubic lattices [[electronic resource]  /] / Michel Deza, Viatcheslav Grishukhin, Mikhail Shtogrin

Pubbl/distr/stampa

London, : Imperial College Press, c2004

ISBN

1-281-86651-2

9786611866518

1-4237-0888-1

1-86094-548-1

Descrizione fisica

1 online resource (186 p.)

Altri autori (Persone)

GrishukhinViatcheslav

ShtogrinMikhail

Disciplina

511/.5

Soggetti

Graph theory

Polytopes

Metric spaces

Embeddings (Mathematics)

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

On t.p. "o<U+00cc><U+0083>n" is subscript.

Nota di bibliografia

Includes bibliographical references (p. 163-169) and index.

Nota di contenuto

Scale-Isometric Polytopal Graphs in Hypercubes and Cubic Lattices: Polytopes in Hypercubes and Zn; Preface; Contents; 1. Introduction: Graphs and their Scale-isometric Embedding; 2. An Example: Embedding of Fullerenes; 3. Regular Tilings and Honeycombs; 4. Semi-regular Polyhedra and Relatives of Prisms and Antiprisms; 5. Truncation, Capping and Chamfering; 6. 92 Regular-faced (not Semi-regular) Polyhedra; 7. Semi-regular and Regular-faced n-polytopes, n  4; 8. Polycycles and Other Chemically Relevant Graphs; 9. Plane Tilings; 10. Uniform Partitions of 3-space and Relatives

11. Lattices, Bi-lattices and Tiles12. Small Polyhedra; 13. Bifaced Polyhedra; 14. Special l1-graphs; 15. Some Generalization of l1-embedding; Bibliography; Index

Sommario/riassunto

This monograph identifies polytopes that are ""combinatorially l1-



embeddable"", within interesting lists of polytopal graphs, i.e. such that corresponding polytopes are either prominent mathematically (regular partitions, root lattices, uniform polytopes and so on), or applicable in chemistry (fullerenes, polycycles, etc.). The embeddability, if any, provides applications to chemical graphs and, in the first case, it gives new combinatorial perspective to ""l2-prominent"" affine polytopal objects. The lists of polytopal graphs in the book come from broad areas of geometry, crystallography an