|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910438158703321 |
|
|
Autore |
Stix Jakob |
|
|
Titolo |
Rational points and arithmetic of fundamental groups : evidence for the section conjecture / / Jakob Stix |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin ; ; New York, : Springer, c2013 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2013.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XX, 249 p.) |
|
|
|
|
|
|
Collana |
|
Lecture notes in mathematics, , 1617-9692 ; ; 2054 |
|
|
|
|
|
|
Classificazione |
|
14H3014G0514H2511G2014G3214F35 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Rational points (Geometry) |
Fundamental groups (Mathematics) |
Geometry, Algebraic |
Non-Abelian groups |
Number theory |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. [239]-245) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Part I Foundations of Sections -- 1 Continuous Non-abelian H1 with Profinite Coefficients.-2 The Fundamental Groupoid -- 3 Basic Geometric Operations in Terms of Sections -- 4 The Space of Sections as a Topological Space -- 5 Evaluation of Units -- 6 Cycle Classes in Anabelian Geometry -- 7 Injectivity in the Section Conjecture -- Part II Basic Arithmetic of Sections -- 7 Injectivity in the Section Conjecture -- 8 Reduction of Sections -- 9 The Space of Sections in the Arithmetic Case and the Section Conjecture in Covers -- Part III On the Passage from Local to Global -- 10 Local Obstructions at a p-adic Place -- 11 Brauer-Manin and Descent Obstructions -- 12 Fragments of Non-abelian Tate–Poitou Duality -- Part IV Analogues of the Section Conjecture -- 13 On the Section Conjecture for Torsors -- 14 Nilpotent Sections -- 15 Sections over Finite Fields -- 16 On the Section Conjecture over Local Fields -- 17 Fields of Cohomological Dimension 1 -- 18 Cuspidal Sections and Birational Analogues. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
The section conjecture in anabelian geometry, announced by Grothendieck in 1983, is concerned with a description of the set of rational points of a hyperbolic algebraic curve over a number field in terms of the arithmetic of its fundamental group. While the conjecture |
|
|
|
|