|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910438154103321 |
|
|
Titolo |
Control and optimization with PDE constraints / / Kristian Bredies ... [et. al.], editors |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New York, : Springer, 2013 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (221 p.) |
|
|
|
|
|
|
Collana |
|
International series of numerical mathematics ; ; 164 |
|
|
|
|
|
|
Altri autori (Persone) |
|
ClasonChristian |
KunischK <1952-> (Karl) |
WinckelGregory von |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Mathematical optimization |
Programming (Mathematics) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Preface -- An Adaptive POD Approximation Method for the Control of Advection-Diffusion Equations (A. Alla and M. Falcone) -- Generalized Sensitivity Analysis for Delay Differential Equations (H. T. Banks, D. Robbins and K. L. Sutton) -- Regularity and Unique Existence of Solution to Linear Diffusion Equation with Multiple Time-Fractional Derivatives (S. Beckers and M. Yamamoto) -- Nonsmooth Optimization Method and Sparsity (K. Ito) -- Parareal in Time Intermediate Targets Methods for Optimal Control Problem (Y. Maday, M -- K. Riahi and J. Solomon) -- Hamilton–Jacobi–Bellman Equations on Multi-Domains (Z. Rao and H. Zidani) -- Gradient Computation for Model Calibration with Pointwise Observations (E. W. Sachs and M. Schu) -- Numerical Analysis of POD A-Posteriori Error Estimation for Optimal Control (A. Studinger and S. Volkwein) -- Cubature on C1 Space (G. Turinici) -- A Globalized Newton Method for the Optimal Control of Fermionic Systems (G. von Winckel) -- A Priori Error Estimates for Optimal Control Problems with Constraints on the Gradient of the State on Nonsmooth Polygonal Domains (W. Wollner). |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Many mathematical models of physical, biological and social systems involve partial differential equations (PDEs). The desire to understand |
|
|
|
|