1.

Record Nr.

UNINA9910438149703321

Titolo

Mathematical modeling and validation in physiology : applications to the cardiovascular and respiratory systems / / Jerry J. Batzel, Mostafa Bachar, Franz Kappel, editors

Pubbl/distr/stampa

Berlin ; ; New York, : Springer, c2013

ISBN

3-642-32882-2

Edizione

[1st ed. 2013.]

Descrizione fisica

1 online resource (XX, 254 p. 83 illus., 34 illus. in color.)

Collana

Lecture notes in mathematics ; ; 2064

Altri autori (Persone)

BatzelJerry J

BacharMostafa

KappelF

Disciplina

571.015118

Soggetti

Human physiology - Mathematical models

Cardiovascular system - Mathematical models

Respiratory organs - Mathematical models

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

1 Merging Mathematical and Physiological Knowledge: Dimensions and Challenges -- 2 Mathematical Modeling of Physiological Systems -- 3 Parameter Selection Methods in Inverse Problem Formulation.- 4 Application of the Unscented Kalman Filtering to Parameter Estimation -- 5 Integrative and Reductionist Approaches to Modeling of Control of Breathing -- 6 Parameter Identification in a Respiratory Control System Model with Delay -- 7 Experimental Studies of Respiration and Apnea -- 8 Model Validation and Control Issues in the Respiratory System -- 9 Experimental Studies of the Baroreflex -- 10 Development of Patient Specific Cardiovascular Models Predicting Dynamics in Response to Orthostatic Stress Challenges -- 11 Parameter Estimation of a Model for Baroreflex Control of Unstressed Volume.

Sommario/riassunto

This volume synthesizes theoretical and practical aspects of both the mathematical and life science viewpoints needed for modeling of the cardiovascular-respiratory system specifically and physiological systems generally.  Theoretical points include model design, model complexity and validation in the light of available data, as well as control theory approaches to feedback delay and Kalman filter



applications to parameter identification. State of the art approaches using parameter sensitivity are discussed for enhancing model identifiability through joint analysis of model structure and data. Practical examples illustrate model development at various levels of complexity based on given physiological information. The sensitivity-based approaches for examining model identifiability are illustrated by means of specific modeling  examples. The themes presented address the current problem of patient-specific model adaptation in the clinical setting, where data is typically limited.