|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910438050103321 |
|
|
Autore |
Shaikhet Leonid |
|
|
Titolo |
Lyapunov functionals and stability of stochastic functional differential equations / / Leonid Shaikhet |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland ; ; New York, : Springer, c2013 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2013.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (342 p.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Lyapunov functions |
Stochastic differential equations |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Short Introduction to Stability Theory of Deterministic Functional Differential Equations -- Stability of Linear Scalar Equations -- Stability of Linear Systems of Two Equations -- Stability of Systems with Nonlinearities -- Matrix Riccati Equations in Stability of Linear Stochastic Differential Equations with Delays -- Stochastic Systems with Markovian Switching -- Stabilization of the Controlled Inverted Pendulum by Control with Delay -- Stability of Equilibrium Points of Nicholson’s Blowflies Equation with Stochastic Perturbations -- Stability of Positive Equilibrium Point of Nonlinear System of Type of Predator-Prey with Aftereffect and Stochastic Perturbations -- Stability of SIR Epidemic Model Equilibrium Points -- Stability of Some Social Mathematical Models with Delay by Stochastic Perturbations. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential equations with delays. This work continues and complements the author’s previous book Lyapunov Functionals and Stability of Stochastic Difference Equations, where this method is described for discrete- and continuous-time difference equations. The text begins with a description of the peculiarities of deterministic and stochastic functional differential equations. There follow basic definitions for stability theory of stochastic hereditary systems, and a |
|
|
|
|