1.

Record Nr.

UNINA990008896540403321

Titolo

Annales tectonicae : international journal of structural geology and tectonics

Pubbl/distr/stampa

Firenze, : Editrice Il Sedices

ISSN

0394-5596

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Periodico

2.

Record Nr.

UNINA9910437893803321

Autore

Krothapalli Sreenivasa Rao

Titolo

Emotion recognition using speech features / / Sreenivasa Rao Krothapalli, Shashidhar G. Koolagudi

Pubbl/distr/stampa

New York, : Springer, 2013

ISBN

9781283908764

128390876X

9781461451433

1461451434

Edizione

[1st ed. 2013.]

Descrizione fisica

1 online resource (133 p.)

Collana

SpringerBriefs in electrical and computer engineering : SpringerBriefs in speech technology, , 2191-8112

Altri autori (Persone)

KoolagudiShashidhar G

Disciplina

006.454

Soggetti

Emotions

Speech perception

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Introduction -- Speech Emotion Recognition: A Review -- Emotion Recognition Using Excitation Source Information -- Emotion Recognition Using Vocal Tract Information -- Emotion Recognition Using Prosodic Information -- Summary and Conclusions -- Linear Prediction Analysis of Speech -- MFCC Features -- Gaussian Mixture Model (GMM).



Sommario/riassunto

“Emotion Recognition Using Speech Features” covers emotion-specific features present in speech and discussion of suitable models for capturing emotion-specific information for distinguishing different emotions.  The content of this book is important for designing and developing  natural and sophisticated speech systems. Drs. Rao and Koolagudi lead a discussion of how emotion-specific information is embedded in speech and how to acquire emotion-specific knowledge using appropriate statistical models. Additionally, the authors provide information about using evidence derived from various features and models. The acquired emotion-specific knowledge is useful for synthesizing emotions. Discussion includes global and local prosodic features at syllable, word and phrase levels, helpful for capturing emotion-discriminative information; use of complementary evidences obtained from excitation sources, vocal tract systems and prosodic features in order to enhance the emotion recognition performance;  and proposed multi-stage and hybrid models for improving the emotion recognition performance.