1.

Record Nr.

UNINA9910437871603321

Autore

Stillwell John

Titolo

The Real Numbers : An Introduction to Set Theory and Analysis / / by John Stillwell

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2013

ISBN

3-319-01577-X

Edizione

[1st ed. 2013.]

Descrizione fisica

1 online resource (253 p.)

Collana

Undergraduate Texts in Mathematics, , 2197-5604

Disciplina

510

Soggetti

Functions of real variables

Mathematical logic

Mathematics

History

Real Functions

Mathematical Logic and Foundations

History of Mathematical Sciences

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di contenuto

The Fundamental Questions -- From Discrete to Continuous -- Infinite Sets -- Functions and Limits -- Open Sets and Continuity -- Ordinals -- The Axiom of Choice -- Borel Sets -- Measure Theory -- Reflections -- Bibliography -- Index.

Sommario/riassunto

While most texts on real analysis are content to assume the real numbers, or to treat them only briefly, this text makes a serious study of the real number system and the issues it brings to light. Analysis needs the real numbers to model the line, and to support the concepts of continuity and measure. But these seemingly simple requirements lead to deep issues of set theory—uncountability, the axiom of choice, and large cardinals. In fact, virtually all the concepts of infinite set theory are needed for a proper understanding of the real numbers, and hence of analysis itself. By focusing on the set-theoretic aspects of analysis, this text makes the best of two worlds: it combines a down-to-earth introduction to set theory with an exposition of the essence of analysis—the study of infinite processes on the real numbers. It is



intended for senior undergraduates, but it will also be attractive to graduate students and professional mathematicians who, until now, have been contentto "assume" the real numbers. Its prerequisites are calculus and basic mathematics. Mathematical history is woven into the text, explaining how the concepts of real number and infinity developed to meet the needs of analysis from ancient times to the late twentieth century. This rich presentation of history, along with a background of proofs, examples, exercises, and explanatory remarks, will help motivate the reader. The material covered includes classic topics from both set theory and real analysis courses, such as countable and uncountable sets, countable ordinals, the continuum problem, the Cantor–Schröder–Bernstein theorem, continuous functions, uniform convergence, Zorn's lemma, Borel sets, Baire functions, Lebesgue measure, and Riemann integrable functions.