1.

Record Nr.

UNISA990002072930203316

Autore

BLĂ–CKSTIEGEL, Karl-Heinz

Titolo

Arbitration and state enterprises : a survey on the national and international state of law and practice / by Karl-Heinz Bockstiegel

Pubbl/distr/stampa

Deventer : Kluwer law and taxation, copyr. 1984

Descrizione fisica

VI, 113 p. ; 24 cm

Disciplina

346.070269

Soggetti

Lodo arbitrale

Aziende pubbliche - Legislazione

Collocazione

XXIII.3.F. 12

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910437857303321

Titolo

Gene Network Inference : Verification of Methods for Systems Genetics Data / / edited by Alberto Fuente

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2013

ISBN

3-642-45161-6

Edizione

[1st ed. 2013.]

Descrizione fisica

1 online resource (135 p.)

Disciplina

570

570285

571.4

572.8

Soggetti

Systems biology

Bioinformatics

Biological systems

Computational biology

Gene expression

Systems Biology

Computer Appl. in Life Sciences

Gene Expression



Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references at the end of each chapters.

Nota di contenuto

Simulation of the Benchmark Datasets -- A Panel of Learning Methods for the Reconstruction of Gene Regulatory Networks in a Systems Genetics Context -- Benchmarking a simple yet effective approach for inferring gene regulatory networks from systems genetics data -- Differential Equation based reverse-engineering algorithms: pros and cons -- Gene regulatory network inference from systems genetics data using tree-based methods -- Extending partially known networks -- Integration of genetic variation as external perturbation to reverse engineer regulatory networks from gene expression data -- Using Simulated Data to Evaluate Bayesian Network Approach for Integrating Diverse Data.

Sommario/riassunto

This book presents recent methods for Systems Genetics (SG) data analysis, applying them to a suite of simulated SG benchmark datasets. Each of the chapter authors received the same datasets to evaluate the performance of their method to better understand which algorithms are most useful for obtaining reliable models from SG datasets. The knowledge gained from this benchmarking study will ultimately allow these algorithms to be used with confidence for SG studies e.g. of complex human diseases or food crop improvement. The book is primarily intended for researchers with a background in the life sciences, not for computer scientists or statisticians.