1.

Record Nr.

UNINA9910437575303321

Autore

Aggarwal Charu C

Titolo

Outlier analysis / / Charu C. Aggarwal

Pubbl/distr/stampa

New York, NY, : Springer, c2013

ISBN

1-4614-6396-3

Edizione

[1st ed. 2013.]

Descrizione fisica

1 online resource (xv, 446 pages) : illustrations (some color)

Collana

Gale eBooks

Disciplina

519.5/2

519.52

Soggetti

Outliers (Statistics)

Data mining

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

An Introduction to Outlier Analysis -- Probabilistic and Statistical Models for Outlier Detection -- Linear Models for Outlier Detection -- Proximity-based Outlier Detection -- High-Dimensional Outlier Detection: The Subspace Method -- Supervised Outlier Detection -- Outlier Detection in Categorical, Text and Mixed Attribute Data -- Time Series and Multidimensional Streaming Outlier Detection -- Outlier Detection in Discrete Sequences -- Spatial Outlier Detection -- Outlier Detection in Graphs and Networks -- Applications of Outlier Analysis.

Sommario/riassunto

With the increasing advances in hardware technology for data collection, and advances in software technology (databases) for data organization, computer scientists have increasingly participated in the latest advancements of the outlier analysis field. Computer scientists, specifically, approach this field based on their practical experiences in managing large amounts of data, and with far fewer assumptions– the data can be of any type, structured or unstructured, and may be extremely large. Outlier Analysis is a comprehensive exposition, as understood by data mining experts, statisticians and computer scientists. The book has been organized carefully, and emphasis was placed on simplifying the content, so that students and practitioners can also benefit. Chapters will typically cover one of three areas: methods and techniques  commonly used in outlier analysis, such as linear methods, proximity-based methods, subspace methods, and



supervised methods; data  domains, such as, text, categorical, mixed-attribute, time-series, streaming, discrete sequence, spatial and network data; and key applications of these methods as applied to diverse domains such as  credit card fraud detection, intrusion detection, medical diagnosis, earth science, web log analytics, and social network analysis are covered.