1.

Record Nr.

UNIBAS000023483

Autore

Carlyle, Thomas

Titolo

Lettere d'amore / Thomas Carlyle, Jane Welsh ; traduzione di A. Tomei

Pubbl/distr/stampa

Bari : <<G.>> Laterza e figli, 1926

Descrizione fisica

VIII, 183 p. ; 20 cm

Collana

Biblioteca di cultura moderna ; 139

Altri autori (Persone)

Carlyle, Jane Welsh

Disciplina

826

Soggetti

Carlyle, Thomas Lettere e carteggi

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

In cop. e in testa al front. firma autografa: Sergio de Pilato, gennaio '927

L. 15



2.

Record Nr.

UNINA9910427685303321

Autore

Mizera Sebastian

Titolo

Aspects of scattering amplitudes and moduli space localization / / Sebastian Mizera

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2020]

©2020

ISBN

3-030-53010-8

Edizione

[1st ed. 2020.]

Descrizione fisica

1 online resource (XVII, 134 p. 18 illus., 14 illus. in color.)

Collana

Springer Theses

Disciplina

515.37

Soggetti

Differential forms

Riemann surfaces

Geometry, Differential

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Chapter1: Introduction -- Chapter2: Intersection Numbers of Twisted Di erential Forms -- Chapter3: Recursion Relations from Braid Matrices -- Chapter4: Further Examples of Intersection Numbers -- Chapter5: Conclusion.

Sommario/riassunto

This thesis proposes a new perspective on scattering amplitudes in quantum field theories. Their standard formulation in terms of sums over Feynman diagrams is replaced by a computation of geometric invariants, called intersection numbers, on moduli spaces of Riemann surfaces. It therefore gives a physical interpretation of intersection numbers, which have been extensively studied in the mathematics literature in the context of generalized hypergeometric functions. This book explores physical consequences of this formulation, such as recursion relations, connections to geometry and string theory, as well as a phenomenon called moduli space localization. After reviewing necessary mathematical background, including topology of moduli spaces of Riemann spheres with punctures and its fundamental group, the definition and properties of intersection numbers are presented. A comprehensive list of applications and relations to other objects is given, including those to scattering amplitudes in open- and closed-string theories. The highlights of the thesis are the results regarding



localization properties of intersection numbers in two opposite limits: in the low- and the high-energy expansion. In order to facilitate efficient computations of intersection numbers the author introduces recursion relations that exploit fibration properties of the moduli space. These are formulated in terms of so-called braid matrices that encode the information of how points braid around each other on the corresponding Riemann surface. Numerous application of this approach are presented for computation of scattering amplitudes in various gauge and gravity theories. This book comes with an extensive appendix that gives a pedagogical introduction to the topic of homologies with coefficients in a local system.