| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910422648303321 |
|
|
Autore |
Majumdar Sarangam |
|
|
Titolo |
Microbial communication : mathematical modeling, synthetic biology and the role of noise / / Sarangam Majumdar, Sisir Roy |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Singapore : , : Springer, , [2020] |
|
©2020 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2020.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XVII, 175 p. 35 illus., 18 illus. in color.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Cell interaction - Mathematical models |
Bacteriology |
Bioinformatics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Chapter 1. Introduction -- Chapter 2. Talking about talking microbes -- Chapter 3. Mathematical models of quorum sensing molecular mechanisms -- Chapter 4. Mathematical models of quorum sensing regulated biofilms development -- Chapter 5. Mathematical models of bacterial swarming behaviour regulated by quorum sensing. Chapter 6. Mathematical models of bacterial quorum sensing regulated virulence factors -- Chapter 7. Evolutionary models of bacterial communication systems -- Chapter 8. Pattern formation in bacterial conversation mechanisms -- Chapter 9. Summary of Experimental Results -- Chapter 10. Therapy related mathematical models and quorum quenching -- Chapter 11. Role of noise in microbial communication -- Chapter 12. Electrical communication systems in bacterial biofilms and ion-channels -- Chapter 13. Synthetic biology and microbial communication -- Chapter 14. Role of Noise in Synthetic Biology.-Chapter 15 Noise in Science and Technology Vs Biological System. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book introduces the concept of bacterial communication systems from a mathematical modeling point of view. It sheds light on the research undertaken in the last three decades, and the mathematical models that have been proposed to understand the underlying mechanism of such systems. These communication systems are related |
|
|
|
|
|
|
|
|
|
|
|
|
|
to quorum sensing mechanisms and quorum sensing regulated processes such as biofilm formation, gene expression, bioluminescence, swarming and virulence. The book further describes the phenomenon of noise, and discusses how noise plays a crucial role in gene expression and the quorum sensing circuit operationusing a set of tools like frequency domain analysis, power spectral density, stochastic simulation and the whitening effect. It also explores various aspects of synthetic biology (related to bacterial communication), such as genetic toggle switch, bistable gene regulatory networks, transcriptional repressor systems, pattern formation, synthetic cooperation, predator-prey synthetic systems, dynamical quorum sensing, synchronized quorum of genetic clocks, role of noise in synthetic biology, the Turing test and stochastic Turing test. |
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910254183903321 |
|
|
Autore |
Schijve Jaap |
|
|
Titolo |
Biaxial Fatigue of Metals : The Present Understanding / / by Jaap Schijve |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2016.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (30 p.) |
|
|
|
|
|
|
Collana |
|
SpringerBriefs in Applied Sciences and Technology, , 2191-530X |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Engineering design |
Metals |
Mechanics |
Engineering Design |
Metallic Materials |
Classical Mechanics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
1. Biaxial fatigue of metals. A survey of the present understanding -- 1.1. Introduction -- 2. Physical aspects of the fatigue phenomenon under uniaxial and biaxial loading -- 2.1. The fatigue phenomenon |
|
|
|
|
|
|
|
|
|
|
|
under uniaxial loading -- 2.2. Different modes of fatigue crack growth -- 2.3. The fatigue phenomenon under biaxial load cycles -- 3. Biaxial fatigue research programs -- 3.1. Two methods to describe biaxial load conditions -- 3.2. Specimens for research on biaxial fatigue -- 4. Predictions of fatigue properties for biaxial fatigue loads -- 4.1. Predictions and the similarity concept -- 4.2. Biaxial fatigue of full-scale structures -- 5. Summarizing conclusions -- References. |
|
|
|
|
|
|
Sommario/riassunto |
|
Problems of fatigue under multiaxial fatigue loads have been addressed in a very large number of research publications. The present publication is primarily a survey of biaxial fatigue under constant amplitude loading on metal specimens. It starts with the physical understanding of the fatigue phenomenon under biaxial fatigue loads. Various types of proportional and non-proportional biaxial fatigue loads and biaxial stress distributions in a material are specified. Attention is paid to the fatigue limit, crack nucleation, initial micro crack growth and subsequent macro-crack in different modes of crack growth. The interference between the upper and lower surfaces of a fatigue crack is discussed. Possibilities for predictions of biaxial fatigue properties are analysed with reference to the similarity concept. The significance of the present understanding for structural design problems is considered. The book is completed with a summary of major observations. |
|
|
|
|
|
|
|
| |