1.

Record Nr.

UNINA9910420948103321

Autore

Perez Nestor <1950->

Titolo

Phase transformation in metals : mathematics, theory and practice / / Nestor Perez

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2020]

©2020

ISBN

3-030-49168-4

Edizione

[1st ed. 2020.]

Descrizione fisica

1 online resource (XIX, 544 p. 210 illus., 156 illus. in color.)

Disciplina

669.94

Soggetti

Solidification

Metals - Transport properties

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Includes index.

Nota di contenuto

Chapter 1. Crystallography -- Chapter 2. Surface Reconstruction -- Chapter 3. Mass Transport by Diffusion -- Chapter 4. Solidification -- Chapter 5. Planar Metal Solidification -- Chapter 6. Contour Metal Solidification -- Chapter 7. Alloy Solidification I -- Chapter 8. Alloy Solidification II -- Chapter 9. Solid-State Phase Change -- Chapter 10. Solidification Defects.

Sommario/riassunto

This textbook explains the physics of phase transformation and associated constraints from a metallurgical or materials science point of view, based on many topics including crystallography, mass transport by diffusion, thermodynamics, heat transfer and related temperature gradients, thermal deformation, and even fracture mechanics. The work presented emphasizes solidification and related analytical models based on heat transfer. This corresponds with the most fundamental physical event of continuous evolution of latent heat of fusion for directional or non-directional liquid-to-solid phase transformation at a specific interface with a certain geometrical shape, such as planar or curved front. Dr. Perez introduces mathematical and engineering approximation schemes for describing the phase transformation, mainly during solidification of pure metals and alloys. Giving clear definitions and explanations of theoretical concepts and full detail of derivation of formulae, this interdisciplinary volume is ideal for graduate and upper-level undergraduate students in applied



science, and professionals in the metal making and surface reconstruction industries. Reinforces concepts with example problems illustrating the application of thermodynamics and heat transfer techniques for solving complex solidification problems Adopts an easy and succinct manner narrative style Elucidates solidification shrinkage and gas porosity in casting defects Describes analysis of cracks around a pore using linear elastic fracture mechanics (LEFM) .