1.

Record Nr.

UNINA990009997120403321

Autore

Georg Westermann Verlag

Titolo

Madrid [Risorsa grafica]

Pubbl/distr/stampa

Braunschweig : Georg Westermann Verlag, [196.]

Descrizione fisica

1 diapositiva : col. ; 36 x 24 mm su supporto di cartone 50 x 50 mm

Locazione

ILFGE

Collocazione

Scat. West. O-02(006)

Lingua di pubblicazione

Tedesco

Formato

Grafica

Livello bibliografico

Monografia

Note generali

Tit. aggiunto in ital. rilevato dagli archivi dell'ex Ist. di Geografia

2.

Record Nr.

UNINA9910409667903321

Autore

Zhang Xian-Da

Titolo

A Matrix Algebra Approach to Artificial Intelligence / / by Xian-Da Zhang

Pubbl/distr/stampa

Singapore : , : Springer Singapore : , : Imprint : Springer, , 2020

ISBN

981-15-2770-9

Edizione

[1st ed. 2020.]

Descrizione fisica

1 online resource (xxxiv, 820 pages)

Disciplina

006.3

Soggetti

Artificial intelligence

Computer science - Mathematics

Matrices

Algebra

Artificial Intelligence

Math Applications in Computer Science

Linear and Multilinear Algebras, Matrix Theory

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia



Nota di contenuto

Part 1. Introduction to Matrix Algebra -- Chapter 1. Basic Matrix Computation -- Chapter 2. Matrix Differential -- Chapter 3. Gradient and Optimization -- Chapter 4. Solution of Linear Systems -- Chapter 5. Eigenvalue Decomposition -- Part 2. Artificial Intelligence -- Chapter 6. Machine Learning -- Chapter 7. Neural Networks -- Chapter 8. Support Vector Machines -- Chapter 9. Evolutionary Computation.

Sommario/riassunto

Matrix algebra plays an important role in many core artificial intelligence (AI) areas, including machine learning, neural networks, support vector machines (SVMs) and evolutionary computation. This book offers a comprehensive and in-depth discussion of matrix algebra theory and methods for these four core areas of AI, while also approaching AI from a theoretical matrix algebra perspective. The book consists of two parts: the first discusses the fundamentals of matrix algebra in detail, while the second focuses on the applications of matrix algebra approaches in AI. Highlighting matrix algebra in graph-based learning and embedding, network embedding, convolutional neural networks and Pareto optimization theory, and discussing recent topics and advances, the book offers a valuable resource for scientists, engineers, and graduate students in various disciplines, including, but not limited to, computer science, mathematics and engineering. .