|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910373947803321 |
|
|
Autore |
Mitchell Noah |
|
|
Titolo |
Geometric Control of Fracture and Topological Metamaterials / / by Noah Mitchell |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2020.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XIX, 121 p. 49 illus., 48 illus. in color.) |
|
|
|
|
|
|
Collana |
|
Springer Theses, Recognizing Outstanding Ph.D. Research, , 2190-5061 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Condensed matter |
Optical materials |
Mathematical physics |
Condensed Matter Physics |
Optical Materials |
Mathematical Methods in Physics |
Phase Transitions and Multiphase Systems |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Chapter1: Introduction -- PartI: Gaussian Curvature as a Guide for Material Failure -- Chapter2: Fracture in sheets draped on curved surfaces -- Chapter3: Conforming nanoparticle sheets to surfaces with gaussian curvature -- PartII: Topological mechanics in gyroscopic metamaterials -- Chapter4: Realization of a topological phase transition in a gyroscopic lattice -- Chapter5: Tunable band topology in gyroscopic lattices -- Chapter6: Topological insulators constructed from random point sets -- Chapter7: Conclusions and outlook. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This thesis reports a rare combination of experiment and theory on the role of geometry in materials science. It is built on two significant findings: that curvature can be used to guide crack paths in a predictive way, and that protected topological order can exist in amorphous materials. In each, the underlying geometry controls the elastic behavior of quasi-2D materials, enabling the control of crack |
|
|
|
|