1.

Record Nr.

UNINA9910373880003321

Autore

Khaki Mehdi

Titolo

Satellite Remote Sensing in Hydrological Data Assimilation / / by Mehdi Khaki

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020

ISBN

3-030-37375-4

Edizione

[1st ed. 2020.]

Descrizione fisica

1 online resource (XV, 290 p. 101 illus., 88 illus. in color.)

Disciplina

551.48011

Soggetti

Physical geography

Hydrology

Remote sensing

Computer science - Mathematics

Statistics

Earth System Sciences

Hydrology/Water Resources

Remote Sensing/Photogrammetry

Computational Mathematics and Numerical Analysis

Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Part 1: Hydrological Data Assimilation -- Chapter 1 - Introduction -- Chapter 2 - Data assimilation and remote sensing data -- Part 2: Model-Data -- Chapter 3 - Hydrologic model -- Chapter 4 - Remote sensing for assimilation -- Part 3 : Data Assimilation Filters -- Chapter 5 - Sequential Data Assimilation Techniques for Data Assimilation -- Part 4 : GRACE Data Assimilation -- Chapter 6 - Efficient Assimilation of GRACE TWS into Hydrological Models -- Part 5 : Water Budget Constraint -- Chapter 7 - Constrained Data Assimilation Filtering -- Chapter 8 - Unsupervised Constraint for Hydrologic Data Assimilation -- Part 6 : Data-driven Approach -- Chapter 9 - Non-parametric Hydrologic Data Assimilation -- Chapter 10 - Parametric and Non-parametric Data Assimilation Frameworks -- Part 7 Hydrologic



Applications -- Chapter 11- Groundwater Depletion over Iran -- Chapter 12 - Water Storage Variations over Bangladesh -- Chapter 13 - Multi-mission Satellite Data Assimilation over South America. .

Sommario/riassunto

This book presents the fundamentals of data assimilation and reviews the application of satellite remote sensing in hydrological data assimilation. Although hydrological models are valuable tools to monitor and understand global and regional water cycles, they are subject to various sources of errors. Satellite remote sensing data provides a great opportunity to improve the performance of models through data assimilation.