| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910367744303321 |
|
|
Autore |
Spee Bart |
|
|
Titolo |
Bioengineering Liver Transplantation |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (132 p.) |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
The aim of this Special Issue is to review, understand, and evaluate new and exciting opportunities from the field on regenerative medicine, biomaterials, and stem cell research for the bioengineering of human liver grafts that can be applied for transplantation and personalized treatment of end-stage liver disease.The development of culture conditions for long-term expansion of LGR5+ intestinal stem cells as crypt-villus structures demonstrated the feasibility of deriving complex, organ-like structures in vitro from primary adult tissues, including the liver. Moreover, human pluripotent stem cells (hPSCs) can be applied to generate functionally maturated liver and bile duct epithelial cells.In this Special Issue, we welcome reviews and original papers focussing on hepatic cell sources, including adult hepatic stem cells, organoids, fetal and induced pluripotent stem cells, and primary cells (i.e., hepatocytes, cholangiocytes, and endothelial cells) and how these cells can be applied in tissue engineering strategies to generate implantable and personalized liver grafts. Potential topics include, but are not limited to, the following: liver tissue engineering, liver regeneration, graft repair, liver stem cells and organoids, bio-scaffolds, and 3D printing.We invite you to contribute original research papers, as well as comprehensive reviews, aligned with these themes, to advance and improve the actual state-of-the-art in liver bioengineering and providing new opportunities for the imminent medical problem of organ and tissue shortage for transplantation. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910367751403321 |
|
|
Autore |
Rubattu Speranza |
|
|
Titolo |
Molecular Basis of Cardiovascular Diseases : : Implications of Natriuretic Peptides / / Speranza Rubattu, Massimo Volpe |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
MDPI - Multidisciplinary Digital Publishing Institute, 2019 |
|
Basel, Switzerland : , : MDPI, , 2019 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 electronic resource (212 p.) |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
The natriuretic peptides (NPs) family includes a class of hormones and their receptors needed for the physiological control of cardiovascular functions. The discovery of NPs provided a fundamental contribution into our understanding of the physiological regulation of blood pressure, and of heart and kidney functions. NPs have also been implicated in the pathogenesis of several cardiovascular diseases (CVDs), including hypertension, atherosclerosis, heart failure, and stroke. A fine comprehension of the molecular mechanisms dependent from NPs and underlying the promotion of cardiovascular damage has contributed to improve our understanding of the molecular basis of all major CVDs. Finally, the opportunity to target NPs in order to develop new therapeutic tools for a better treatment of CVDs has been developed over the years. The current Special Issue of the Journal covers all major aspects of the molecular implications of NPs in physiology and pathology of the cardiovascular system, including NP-based therapeutic approaches. |
|
|
|
|
|
|
|
| |