1.

Record Nr.

UNISALENTO991002434969707536

Titolo

American journal of mathematics / Johns Hopkins University, American Mathematical Society

Pubbl/distr/stampa

Baltimore, 1880-

ISSN

0002-9327

Classificazione

LC QA1

Altri autori (Enti)

Johns Hopkins Universityauthor

American Mathematical Societyauthor

Disciplina

510

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Periodico

Note generali

Refereed/Peer-reviewed

Published also in electronic format



2.

Record Nr.

UNINA9910350292303321

Autore

Gan Woon Siong

Titolo

Gauge Invariance Approach to Acoustic Fields / / by Woon Siong Gan

Pubbl/distr/stampa

Singapore : , : Springer Singapore : , : Imprint : Springer, , 2019

ISBN

981-13-8751-6

Edizione

[1st ed. 2019.]

Descrizione fisica

1 online resource (179 pages) : illustrations

Disciplina

530.1435

Soggetti

Acoustical engineering

Materials science

Acoustics

Mechanics

Mechanics, Applied

Solid state physics

Engineering Acoustics

Characterization and Evaluation of Materials

Solid Mechanics

Solid State Physics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Introduction -- History of Gauge Theory -- Coordinate Systems as the Framework of Equations -- Gauge Fields -- Covariant Derivative in Gauge Theory -- Lie Groups -- Global Gauge Invariance -- Local Gauge Invariance -- Gauge Fixing -- Noether’s Theorem -- Spontaneous Symmetry Breaking and Phonon as the Goldstone Mode -- Time Reversal Acoustics and Super resolution -- Negative Refraction, Acoustical Metamaterials , and Acoustical Cloaking -- New Acoustics based on Metamaterials.

Sommario/riassunto

This book highlights the symmetry properties of acoustic fields and describes the gauge invariance approach, which can be used to reveal those properties. Symmetry is the key theoretical framework of metamaterials, as has been demonstrated by the successful fabrication of acoustical metamaterials. The book first provides the necessary theoretical background, which includes the covariant derivative, the



vector potential, and invariance in coordinate transformation. This is followed by descriptions of global gauge invariance (isotropy), and of local gauge invariance (anisotropy). Sections on time reversal symmetry, reflection invariance, and invariance of finite amplitude waves round out the coverage. .