| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA990006048360203316 |
|
|
Autore |
BRENTARI, Ottone |
|
|
Titolo |
L' allegria agonia del Trentino : conferenza tenuta a Milano il 12 giugno 1920 per iniziativa della Lega nazionale italiana / Ottone Brentari |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Milano : Antonio Cordani, 1920 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Trentino-Alto Adige - Guerra mondiale 1914-1918 |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNINA9910349318403321 |
|
|
Titolo |
Birational Geometry of Hypersurfaces : Gargnano del Garda, Italy, 2018 / / edited by Andreas Hochenegger, Manfred Lehn, Paolo Stellari |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2019.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (IX, 297 p. 36 illus.) |
|
|
|
|
|
|
Collana |
|
Lecture Notes of the Unione Matematica Italiana, , 1862-9121 ; ; 26 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Algebraic geometry |
Algebra, Homological |
Algebraic Geometry |
Category Theory, Homological Algebra |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Originating from the School on Birational Geometry of Hypersurfaces, this volume focuses on the notion of (stable) rationality of projective varieties and, more specifically, hypersurfaces in projective spaces, and provides a large number of open questions, techniques and spectacular results. The aim of the school was to shed light on this vast area of research by concentrating on two main aspects: (1) Approaches focusing on (stable) rationality using deformation theory and Chow-theoretic tools like decomposition of the diagonal; (2) The connection between K3 surfaces, hyperkähler geometry and cubic fourfolds, which has both a Hodge-theoretic and a homological side. Featuring the beautiful lectures given at the school by Jean-Louis Colliot-Thélène, Daniel Huybrechts, Emanuele Macrì, and Claire Voisin, the volume also includes additional notes by János Kollár and an appendix by Andreas Hochenegger. . |
|
|
|
|
|
|
|
| |