1.

Record Nr.

UNINA9910346783603321

Autore

Huber Marco

Titolo

Nonlinear Gaussian Filtering : Theory, Algorithms, and Applications

Pubbl/distr/stampa

KIT Scientific Publishing, 2015

ISBN

1000045491

Descrizione fisica

1 electronic resource (V, 270 p. p.)

Collana

Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Sommario/riassunto

By restricting to Gaussian distributions, the optimal Bayesian filtering problem can be transformed into an algebraically simple form, which allows for computationally efficient algorithms. Three problem settings are discussed in this thesis: (1) filtering with Gaussians only, (2) Gaussian mixture filtering for strong nonlinearities, (3) Gaussian process filtering for purely data-driven scenarios. For each setting, efficient algorithms are derived and applied to real-world problems.