Approximately 40% of lung cancer patients will develop central nervous system (CNS) metastases during the course of their disease. Most of these are brain metastases, but up to 10% will develop leptomeningeal metastases. Known risk factors for CNS metastases development are small cell lung cancer (SCLC), adenocarcinoma histology, epidermal growth factor receptor (EGFR) mutant or anaplastic lymphoma kinase (ALK) rearranged lung cancer, advanced nodal status, tumor stage and younger age. CNS metastases can have a negative impact on quality of life (QoL) and overall survival (OS). The proportion of lung cancer patients diagnosed with CNS metastases has increased over the years due to increased use of brain imaging as part of initial cancer staging, advances in imaging techniques and better systemic disease control. Post contrast gadolinium enhanced magnetic resonance imaging (gd-MRI) is preferred, however when this is contra-indicated a contrast enhanced computed tomography (CE-CT) is mentioned as an alternative option. When CNS metastases are diagnosed, local treatment options consist of radiotherapy (stereotactic or whole brain) and surgery. Local treatment can be complicated by symptomatic radiation necrosis for which no high level evidence based treatment exists. Moreover, differential diagnosis with metastasis progression is difficult. Systemic treatment options have expanded over the last years. Until recently, chemotherapy was the only treatment option with a poor penetration in the CNS. Angiogenesis inhibitors are promising in the |