1.

Record Nr.

UNINA9910341848803321

Autore

Bond Edward

Titolo

La Réalité a perdu sa voix / / Edward Bond

Pubbl/distr/stampa

Avignon, : Éditions Universitaires d’Avignon, 2019

ISBN

2-35768-094-6

Descrizione fisica

1 online resource (40 p.)

Altri autori (Persone)

BondEdward

EthisEmmanuel

Soggetti

Theater

radicalité

pessimisme

humanité

violence

structure familiale

voix

art dramatique

justice

culture grecque

Lingua di pubblicazione

Francese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Sommario/riassunto

J’ai vécu en un temps où ce qu’on pouvait appeler la justice a été déchiqueté, ce qui veut dire que notre être humain, aussi, a été déchiqueté. (...) Et donc cette question de la justice nous est présentée, à nous. (...) L’art dramatique n’est aucunement un luxe, c’est le fondement même de la civilisation. Le théâtre tel que nous le connaissons fut créé par les Grecs et, sans doute, encore aujourd’hui, c’est le théâtre qui a le plus à nous dire. Les Grecs ont eu besoin de créer le théâtre parce qu’ils créaient la démocratie, la première vraie démocratie urbaine. Ils disposaient pour cela de trois institutions principales : l’Assemblée (...), le Tribunal. (...) Ces deux institutions avaient trait à la loi. La troisième était le Théâtre qui, lui, n’avait rien à voir avec la loi : le Théâtre avait à voir avec la justice, (...) la culture



grecque est née de là.

2.

Record Nr.

UNINA9910151566403321

Autore

Galperin Anatoly

Titolo

Iterative methods without inversion / / Anatoly Galperin

Pubbl/distr/stampa

Boca Raton, Fla. : , : CRC Press, , [2017]

©2017

ISBN

1-315-35074-2

1-315-36774-2

Edizione

[1st ed.]

Descrizione fisica

1 online resource (241 pages) : illustrations

Collana

Monographs and Research Notes in Mathematics

Disciplina

518/.26

Soggetti

Iterative methods (Mathematics)

Numerical analysis

Banach spaces

Hilbert space

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

1. Tools of the trade -- 2. Ulm's method -- 3. Ulm's method without derivatives -- 4. Broyden's method -- 5. Optimal secant updates of low rank -- 6. Optimal secant-type methods -- 7. Majorant generators and their convergence domains.

Sommario/riassunto

Iterative Methods without Inversion presents the iterative methods for solving operator equations f (x) = 0 in Banach and/or Hilbert spaces. It covers methods that do not require inversions of f (or solving linearized subproblems). The typical representatives of the class of methods discussed are Ulm's and Broyden's methods. Convergence analyses of the methods considered are based on Kantorovich's majorization principle which avoids unnecessary simplifying assumptions like differentiability of the operator or solvability of the equation. These analyses are carried out under a more general assumption about degree of continuity of the operator than traditional Lipschitz continuity: regular continuity. Key Features  The methods discussed are analyzed under the assumption of regular continuity of divided



difference operator, which is more general and more flexible than the traditional Lipschitz continuity. An attention is given to criterions for comparison of merits of various methods and to the related concept of optimality of a method of certain class. Many publications on methods for solving nonlinear operator equations discuss methods that involve inversion of linearization of the operator, which task is highly problematic in infinite dimensions. Accessible for anyone with minimal exposure to nonlinear functional analysis.