| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISALENTO991002439969707536 |
|
|
Autore |
Rauch, Helmut |
|
|
Titolo |
Neutron interferometry : lessons in experimental quantum mechanics / Helmut Rauch, Samuel A. Werner |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New York : Clarendon Press, 2000 |
|
|
|
|
|
|
|
ISBN |
|
0198500270 (acid-free paper) |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
Oxford series on neutron scattering in condensed matter ; 12 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. [366]-367) and index |
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9911019272203321 |
|
|
Autore |
Chhabra Priyanka |
|
|
Titolo |
Advances in Analytical Techniques for Forensic Investigation |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Newark : , : John Wiley & Sons, Incorporated, , 2024 |
|
©2024 |
|
|
|
|
|
|
|
|
|
ISBN |
|
9781394167326 |
1394167326 |
9781394167340 |
1394167342 |
9781394167333 |
1394167334 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (431 pages) |
|
|
|
|
|
|
Altri autori (Persone) |
|
TripathyDivya Bajpai |
GuptāAñjali |
ShuklaShruti |
KumarRajeev |
BhatiKajol |
|
|
|
|
|
|
|
|
Soggetti |
|
Forensic sciences |
Analytical chemistry |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Introduction to Analytical Techniques for Forensic Analysis -- 1.1 Introduction -- 1.1.1 Forensic Analysis -- 1.1.2 Introduction to Instrumentation in Forensic Science -- 1.1.2.1 Validation of Instrument -- 1.1.2.2 Instrumentation for Organic Evidence -- 1.1.2.3 Instrumentation for Inorganic Evidence -- 1.1.2.4 Instrumentation for Biological Evidence -- 1.1.2.5 Instrumentation for Chemical Evidences -- 1.1.2.6 Instrumentation for Physical Evidences -- 1.2 Analytical Techniques for Evidence Analysis -- 1.2.1 Spectroscopy -- 1.2.1.1 Infrared Spectroscopy -- 1.2.1.2 UV-Visible Spectroscopy -- 1.2.1.3 Nuclear Magnetic Resonance Spectroscopy (NMR) -- 1.2.1.4 Mass Spectrometer (MS) -- 1.2.2 Chromatographic |
|
|
|
|
|
|
|
|
|
Techniques -- 1.2.2.1 Gas Chromatography (GC) -- 1.2.2.2 High Performance Liquid Chromatography (HPLC) -- 1.2.2.3 High Performance Thin Layer Chromatography (HPTLC) -- 1.2.3 Hyphenated Techniques -- 1.2.4 Microscopic Techniques -- 1.2.4.1 Optical Microscope -- 1.2.4.2 Electron Microscope -- 1.2.4.3 Stereomicroscope -- 1.2.4.4 Comparison Microscope -- 1.2.4.5 Energy Dispersive X-Ray Coupled Microscopy in Forensic Science -- 1.2.5 X-Ray Diffraction (XRD) -- 1.2.6 Nanotechnology -- 1.3 Conclusion -- References -- Chapter 2 Forensic Sample Collection and Preparation -- 2.1 Introduction -- 2.2 Collection and Preservation of Evidence at the Crime Scene -- 2.2.1 Physical Evidence -- 2.2.2 Biological Evidences -- 2.2.3 Trace Evidences -- 2.2.4 Impression Evidence -- 2.2.5 Explosives -- 2.2.6 Hair and Fibers -- 2.2.7 Documentary Evidence -- 2.2.8 Digital Evidences -- 2.3 Legal Considerations -- 2.4 Chain of Custody -- 2.4.1 Importance and Significance of Chain of Custody in Forensic Science -- 2.5 Admissibility in Court -- 2.6 Forensic Laboratory Analysis. |
2.7 DNA Analysis -- 2.7.1 Types of Crime Scenes Where an Expert Can Find DNA -- 2.7.2 Techniques Used -- 2.8 Fingerprint Analysis -- 2.8.1 Collection -- 2.8.2 Development -- 2.8.3 Lifting -- 2.8.4 Analysis -- 2.8.5 Evaluation -- 2.9 Ballistic Analysis -- 2.9.1 Visual Examination -- 2.9.2 Gunshot Residue Analysis -- 2.9.3 Trajectory Analysis -- 2.10 Toxicology Analysis -- 2.10.1 Spectroscopy -- 2.10.2 Chromatography -- 2.10.3 Immunoassays -- 2.10.4 Mass Spectrometry -- 2.11 Quality Control Measures -- 2.11.1 Validation of Methods -- 2.11.2 Calibration -- 2.11.3 Quality Assurance Programs -- 2.11.4 Documentation and Record Keeping -- 2.11.5 Documentation and Reporting of Evidences -- 2.12 Challenges and Emerging Technologies -- 2.12.1 Contamination -- 2.12.2 Microbial Contamination -- 2.12.3 Packaging and Storage Contamination -- 2.12.4 Preservation Difficulties -- 2.13 Handling Digital Evidence -- 2.14 Emerging Technologies -- 2.15 Advances in DNA Analysis -- 2.16 AI and Machine Learning in Forensic Analysis -- 2.17 Cyber Forensics Techniques -- 2.18 Conclusion -- References -- Chapter 3 Vibrational Spectroscopy in Forensic Sample Analysis -- 3.1 Fundamentals of Vibrational Spectroscopy (VS) -- 3.2 General Forms of Vibrational Spectroscopy -- 3.2.1 Raman Spectroscopy: Science of Elastic and Inelastic Scattering of Photons -- 3.2.2 IR Spectroscopy: Technique Based on Interaction of Infrared Radiation with Matter -- 3.2.3 Chemometrics: Data Driven Science to Extract Chemical Information -- 3.3 The Deployment of Vibrational Spectroscopy in Forensics and Criminal Investigations -- 3.3.1 Biological Fluids -- 3.3.2 Ballistics -- 3.3.3 Document and Ink Evidences -- 3.3.4 Trace Evidences -- 3.3.5 Controlled Substances -- 3.4 Conclusions and Future Prospects -- References -- Chapter 4 UV-Vis Spectroscopy in Forensic Sample Investigation -- 4.1 Introduction. |
4.2 Forensic Science -- 4.3 UV-Vis Spectroscopy -- 4.4 Applications of UV/Visible Spectroscopy in Forensic Science -- 4.4.1 Analysis of Narcotics and Drug Testing -- 4.4.2 Determination of Alcohol in Blood -- 4.4.3 Ink Analysis -- 4.4.4 Analysis of Carbon Monoxide Poisoning in Forensic Blood Samples -- 4.4.5 Forensic Determination of Metals by UV/Visible Spectroscopy -- 4.4.6 Examination of Blood Stains by UV/Visible Spectroscopy -- 4.4.7 Forensic Discrimination of Dyed Fiber Collected from the Incident Site -- 4.5 Future Perspective -- 4.6 Conclusion -- Consent for Publication -- Conflict of Interest -- Acknowledgement -- References -- Chapter 5 Nuclear Magnetic Resonance Spectroscopy: A Versatile Tool for Forensic Sample Analysis -- 5.1 Introduction to NMR in Forensic Science -- 5.1.1 Overview of |
|
|
|
|
|
|
|
NMR Spectroscopy -- 5.1.2 Importance of NMR in Forensic Analysis -- 5.2 NMR Instrumentation and Sample Preparation -- 5.2.1 Types of NMR Spectrometers -- 5.2.1.1 Continuous-Wave NMR Spectrometer (CW-NMR) -- 5.2.1.2 Fourier-Transform NMR Spectrometer (FT-NMR) -- 5.2.2 Sample Preparation Techniques -- 5.2.3 Quantitative NMR (qNMR) Spectroscopy -- 5.3 NMR Spectroscopy Techniques -- 5.3.1 One Dimensional NMR Spectroscopy -- 5.3.2 Two-Dimensional NMR Spectroscopy (2D NMR) -- 5.3.3 Solid State NMR Spectroscopy -- 5.3.4 Dynamic Nuclear Polarization (DNP)-Enhanced NMR Spectroscopy -- 5.4 Forensic Applications of NMR Spectroscopy -- 5.4.1 Drug Analysis -- 5.4.2 Forensic Toxicology -- 5.4.3 Body Fluid Analysis -- 5.4.4 Fire Debris Analysis -- 5.4.5 Polymer and Paint Analysis -- 5.4.6 Fiber Analysis -- 5.5 Data Processing and Interpretation -- 5.5.1 Spectral Processing Techniques -- 5.5.2 Spectral Interpretation and Analysis -- 5.5.3 Chemometrics and Statistical Analysis -- 5.6 Conclusion -- 5.6.1 Challenges and Opportunities. |
5.6.2 Future Outlook and Potential Advancements -- References -- Chapter 6 Forensic Aspects of Mass Spectroscopy and Isotope Ratio Mass Spectroscopy -- 6.1 Introduction -- 6.1.1 Overview of Isotopes and Mass Spectroscopy -- 6.1.2 The Importance of Stable Isotope Analysis Assists Forensic Cases -- 6.1.3 Stable Isotope Abundances in Forensic Evidence -- 6.2 Mass Spectroscopy Principle Instrumentation -- 6.2.1 Mass Spectrometry -- 6.2.2 Principle -- 6.2.3 Instrumentation -- 6.3 Ion Source -- 6.3.1 Electron Impact (EI) -- 6.3.2 Electrospray Ionization (ESI) -- 6.3.3 Matrix-Assisted Laser Desorption/Ionization (MALDI) -- 6.3.4 Chemical Ionization -- 6.4 Mass Analyzer -- 6.4.1 Quadrupole Mass Analyzer -- 6.4.2 Time-of-Flight (TOF) Mass Analyzer -- 6.4.3 Magnetic Sector Mass Analyzer -- 6.5 Detector -- 6.5.1 Electron Multiplier Detector -- 6.5.2 Time-to-Digital Converter (TDC) Detector -- 6.5.3 Channeltron Detector -- 6.5.4 High Mass Detection Detectors -- 6.6 Applications of Mass Spectrometry in Forensics -- 6.6.1 Toxicology -- 6.6.2 Explosives -- 6.6.3 Environmental Forensics -- 6.6.4 DNA Sequencing and Proteomics -- 6.6.5 Forensic Geochemistry -- 6.6.6 Forensic Chemistry -- 6.7 Isotope Ratio Mass Spectrometry Principle and Instrumentation -- 6.7.1 Isotope Ratio Mass Spectrometry (IRMS) -- 6.7.2 Principle -- 6.7.3 Instrumentation -- 6.7.4 Ion Source -- 6.7.5 Types of Ion Sources in IRMS -- 6.7.5.1 Electron Impact Ionization (EI) -- 6.7.5.2 Chemical Ionization (CI) -- 6.7.5.3 Field Ionization (FI) -- 6.7.6 Mass Analyzer -- 6.7.7 Detector -- 6.7.8 Isotope Ratio Measurement System -- 6.7.9 Gas Handling System -- 6.8 Applications of Isotope Ratio Mass Spectroscopy in Forensics -- 6.8.1 Environmental Forensic Applications -- 6.8.2 Wildlife Forensic Applications -- 6.8.3 Illicit Drug Applications -- 6.8.4 Forensic Applications of Archaeology and Anthropology. |
6.8.5 Food Forensic Applications -- 6.8.6 Application of IRMS in Questioned Documents -- 6.8.7 Miscellaneous -- 6.9 Case Study -- 6.10 Challenges and Limitations of Mass Spectrometry in Forensics -- 6.11 Conclusion -- References -- Chapter 7 Application of Plasma and Atomic Absorption Spectroscopy in Sample Analysis -- 7.1 Introduction -- 7.2 Absorption Spectroscopy -- 7.3 Atomic Absorption Spectroscopy (AAS) -- 7.3.1 Principle -- 7.3.2 Instrumentation -- 7.3.3 Working -- 7.4 Plasma Absorption Spectroscopy (PAS) -- 7.4.1 Principle -- 7.4.2 Instrumentation -- 7.4.3 Working -- 7.5 Analysis of Forensic Samples Using AAS and PAS -- 7.5.1 Biological Samples and Matrices -- 7.5.2 Drugs and Pharmaceutical Industry -- 7.5.3 Forensic Medicine -- 7.5.4 Soil -- 7.5.5 Explosives, Gunshot Residues, and Ammunition -- 7.5.6 Glass -- 7.5.7 Heavy Metals -- 7.5.8 Environmental Samples -- 7.5.9 Miscellaneous Samples -- Consent for |
|
|
|
|
|
|
|
|
|
Publication -- Conflict of Interest -- Acknowledgement -- References -- Chapter 8 Application of Gas Chromatography in Criminalistics -- 8.1 Introduction -- 8.1.1 Evolution of Gas Chromatography -- 8.2 Gas Chromatography -- 8.3 Principle of Gas Chromatography -- 8.4 Instrumentation of Gas Chromatography -- 8.5 Advancement in Gas Chromatography Technique -- 8.5.1 High-Resolution GC -- 8.5.2 Fast GC -- 8.5.3 Multidimensional GC -- 8.5.4 Mass Spectrometry (MS) Detection -- 8.6 Miniaturization and Automation in GC -- 8.6.1 Miniaturization -- 8.6.2 Automation -- 8.7 Application of Gas Chromatography in Criminalistics -- 8.7.1 Drug Analysis Using GC -- 8.7.2 Arson Investigation -- 8.7.3 Explosive Analysis -- 8.7.4 Toxin Analysis -- 8.7.5 Food and Beverage Analysis -- 8.7.6 Trace Evidences Analysis -- 8.8 Conclusion -- References -- Chapter 9 HPLC and HP-TLC -- 9.1 Introduction -- 9.2 Principle -- 9.2.1 Basic Principle of HPLC. |
9.2.2 Basic Principle of HP-TLC. |
|
|
|
|
|
|
Sommario/riassunto |
|
This book provides a comprehensive exploration of advanced analytical techniques utilized in forensic investigations. It covers a wide range of methodologies including spectroscopy, chromatography, and mass spectrometry, with specific applications in analyzing organic, inorganic, biological, and chemical evidence. The book is edited by experts in the field and aims to enhance the understanding of forensic science through detailed discussion of sample collection, preparation, and analysis techniques. It also addresses emerging technologies such as AI, machine learning, and cyber forensics. The intended audience includes forensic scientists, researchers, and students seeking to deepen their knowledge of analytical methods in forensic science. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910309743503321 |
|
|
Autore |
Benz Christiane, Prof. Dr. |
|
|
Titolo |
Frühe mathematische Bildung – Ziele und Gelingensbedingungen für den Elementar- und Primarbereich / / Christiane Benz, Meike Grüßing, Jens Holger Lorenz, Kristina Reiss, Christoph Selter, Bernd Wollring, Stiftung Haus der kleinen Forscher |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Leverkusen, : Verlag Barbara Budrich, 2017 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (230 pages) : illustrations, photographs |
|
|
|
|
|
|
Collana |
|
Wissenschaftliche Untersuchungen zur Arbeit der Stiftung „Haus der kleinen Forscher“ |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Mathematical education |
Mathematische Bildung |
Elementar- und Primarbereich |
elementary and primary education |
early education |
frühe Bildung |
MINT education |
MINT-Bildung |
professionalisation |
Professionalisierung |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Sommario/riassunto |
|
Im Rahmen der Schriftenreihe „Wissenschaftliche Untersuchungen zur Arbeit der Stiftung ‚Haus der kleinen Forscher‘“ werden regelmäßig wissenschaftliche Beiträge von renommierten Expertinnen und Experten aus dem Bereich der frühen Bildung veröffentlicht. Diese Schriftenreihe dient einem fachlichen Dialog zwischen Stiftung, Wissenschaft und Praxis, mit dem Ziel, allen Kitas, Horten und Grundschulen in Deutschland fundierte Unterstützung für ihren frühkindlichen Bildungsauftrag zu geben. Der vorliegende achte Band der Reihe mit |
|
|
|
|
|
|
|
|
|
|
einem Geleitwort von Kristina Reiss stellt die Ziele und Gelingensbedingungen mathematischer Bildung im Elementarund Primarbereich in den Fokus. Christiane Benz, Meike Grüßing, Jens Holger Lorenz, Christoph Selter und Bernd Wollring spezifizieren in ihrer Expertise pädagogisch-inhaltliche Zieldimensionen mathematischer Bildung im Kita- und Grundschulalter. Neben einer theoretischen Fundierung verschiedener Zielbereiche werden Instrumente für deren Messung aufgeführt. Des Weiteren erörtern die Autorinnen und Autoren Gelingensbedingungen für eine effektive und wirkungsvolle frühe mathematische Bildung in der Praxis. Sie geben zudem Empfehlungen für die Weiterentwicklung der Stiftungsangebote und die wissenschaftliche Begleitung der Stiftungsarbeit im Bereich Mathematik. Das Schlusskapitel des Bandes beschreibt die Umsetzung dieser fachlichen Empfehlungen in den inhaltlichen Angeboten der Stiftung „Haus der kleinen Forscher“. Within the framework of the publication series "Wissenschaftliche Untersuchungen zur Arbeit der Stiftung 'Haus der kleinen Forscher'", scientific contributions from renowned experts in the field of early education are regularly published. This series of publications serves a professional dialogue between the Foundation, science and practice, with the aim of providing all day-care centres, after-schools and primary schools in Germany with well-founded support for their early childhood educational mission. This eighth volume of the series, with a foreword by Kristina Reiss, focuses on the goals and conditions for successful mathematical education in elementary and primary schools. Christiane Benz, Meike Grüßing, Jens Holger Lorenz, Christoph Selter and Bernd Wollring specify in their expertise the pedagogical and content-related target dimensions of mathematical education in nursery and primary school age. In addition to a theoretical foundation of various target areas, instruments for their measurement are listed. Furthermore, the authors discuss conditions for effective and effective early mathematical education in practice. They also give recommendations for the further development of the Foundation's services and the scientific support of the Foundation's work in the field of mathematics. The final chapter of the volume describes the implementation of these professional recommendations in the content of the "Haus der kleinen Forscher" foundation. |
Mit seiner konsequenten Verzahnung von kindlichenKompetenzen mit Kompetenzen der prof'essionelien Lehrperson leistet das Buch einenausgesprochen wertvollen Beitrag für die Aus- und Weiterbildung von Lehrpersonen. Beiträge zur Lehrerinnenbildung- und Lehrerbildung 37/2019 |
|
|
|
|
|
| |