| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA990002929170203316 |
|
|
Autore |
PROST, Mario |
|
|
Titolo |
D'abord les moyens, les besoins viendront après commerce et environnement dans la "jurisprudence" du GATT et de l'OMC / Mario Prost ; préface de Brigitte Stern |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Bruxelles : Bruylant, copyr. 2005 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Collana |
|
Mondialisation et droit international ; 8 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Accordo generale sulle tariffe e il commercio < GATT > |
Commercio internazionale - Aspetti ambientali |
World Trade Organization <WTO> |
|
|
|
|
|
|
|
|
Collocazione |
|
XXIII.2.C. 58 (IG VIII 10 FR 365) |
XXIII.2.C. 58 a (IG VIII 10 FR 365) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNISA996308767703316 |
|
|
Titolo |
Begriff und Wesen des sozialen Rechtsstaates. Die auswärtige Gewalt der Bundesrepublik : Berichte und Aussprache zu den Berichten in den Verhandlungen der Tagung der deutschen Staatsrechtslehrer zu Bonn am 15. und 16. Oktober 1953 |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin ; ; Boston : , : De Gruyter, , [2013] |
|
©1973 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[Nachdr. d. Ausg. 1954 (1966). Reprint 2013] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (278 pages) |
|
|
|
|
|
|
Collana |
|
Veröffentlichungen der Vereinigung der Deutschen Staatsrechtslehrer ; ; 12 |
|
|
|
|
|
|
|
|
Altri autori (Persone) |
|
BachofOtto |
ForsthoffErnst |
GreweWilhelm |
MenzelEberhard |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Constitutional law - Germany (West) |
Administrative law - Germany (West) |
Electronic books. |
Germany (West) Social policy Congresses |
Germany (West) Foreign relations Congresses |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"Aussprache zu den Berichten in den Verhandlungen der Tagung der deutschen Staatsrechtslehrer zu Bonn am 15. und 16. Oktober 1953." |
|
|
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Frontmatter -- Inhalt -- I. Eröffnung der Tagung am 15. Oktober 1953 -- II. Erster Beratungsgegenstand: Begriff und Wesen des sozialen Rechtsstaates -- III. Zweiter Beratungsgegenstand: Die auswärtige Gewalt der Bundesrepublik -- IV. Verzeichnis der Redner -- V. Verzeichnis der Mitglieder der Vereinigung der Deutschen Staatsrechtslehrer -- VI. Satzung |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910309661003321 |
|
|
Autore |
Alikakos Nicholas D. |
|
|
Titolo |
Elliptic Systems of Phase Transition Type / / by Nicholas D. Alikakos, Giorgio Fusco, Panayotis Smyrnelis |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Birkhäuser, , 2018 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2018.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XII, 343 p. 59 illus., 10 illus. in color.) |
|
|
|
|
|
|
Collana |
|
Progress in Nonlinear Differential Equations and Their Applications, , 1421-1750 ; ; 91 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Differential equations, Partial |
Calculus of variations |
Differential equations |
Partial Differential Equations |
Calculus of Variations and Optimal Control; Optimization |
Ordinary Differential Equations |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Introduction -- Connections -- Basics for the PDE System -- The Cut-Off Lemma and a Maximum Principle -- Estimates -- Symmetry and the Vector Allen-Cahn Equation: the Point Group in Rn -- Symmetry and the Vector Allen-Cahn Equation: Crystalline and Other Complex Structures -- Hierarchical Structure - Stratification -- Vector Minimizers in R2 -- Radial Solutions of ∆u = c2u. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book focuses on the vector Allen-Cahn equation, which models coexistence of three or more phases and is related to Plateau complexes – non-orientable objects with a stratified structure. The minimal solutions of the vector equation exhibit an analogous structure not present in the scalar Allen-Cahn equation, which models coexistence of two phases and is related to minimal surfaces. The 1978 De Giorgi conjecture for the scalar problem was settled in a series of papers: Ghoussoub and Gui (2d), Ambrosio and Cabré (3d), Savin (up to 8d), and del Pino, Kowalczyk and Wei (counterexample for 9d and above). This book extends, in various ways, the Caffarelli-Córdoba |
|
|
|
|
|
|
|
|
|
|
density estimates that played a major role in Savin's proof. It also introduces an alternative method for obtaining pointwise estimates. Key features and topics of this self-contained, systematic exposition include: • Resolution of the structure of minimal solutions in the equivariant class, (a) for general point groups, and (b) for general discrete reflection groups, thus establishing the existence of previously unknown lattice solutions. • Preliminary material beginning with the stress-energy tensor, via which monotonicity formulas, and Hamiltonian and Pohozaev identities are developed, including a self-contained exposition of the existence of standing and traveling waves. • Tools that allow the derivation of general properties of minimizers, without any assumptions of symmetry, such as a maximum principle or density and pointwise estimates. • Application of the general tools to equivariant solutions rendering exponential estimates, rigidity theorems and stratification results. This monograph is addressed to readers, beginning from the graduate level, with an interest in any of the following: differential equations – ordinary or partial; nonlinear analysis; the calculus of variations; the relationship of minimal surfaces to diffuse interfaces; or the applied mathematics of materials science. |
|
|
|
|
|
| |